\((x-y)^2+(y-z)^2+(z-x)^2=(y+z-2x) ^2+(z+x-2y)^2+(x+y-2z)^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

Ta có:

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(x+y-2z\right)^2\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=6x^2+6y^2+6z^2-6xy-6yz-6zx\)

\(\Rightarrow4x^2+4y^2+4z^2-4xy-4yz-4zx=0\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Rightarrow x=y=z\)

11 tháng 6 2018

Bạn thử khai triển hết vế sai đi

8 tháng 1 2016

phân tích vế trái ta được

2(x2+y2+z2(xy+yz+zx))

phân tích vế phải ta được

6(x2+y2+z2(xy+yz+zx))

vì VT=VP nên VP-VT=0

 4(x2+y2+z2(xy+yz+zx))=0

 2(2(x2+y2+z2(xy+yz+zx)))=02((xy)2+(yz)2+(zx)2)=0(xy)2+(yz)2+(zx)2=0

(xy)2=0;(yz)2=0;(zx)2=0x=y=z<