K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

Xét : x^2-1 = (x-1).(x+1)

x ko chia hết cho 3 nên x chia 3 dư 1 hoặc 2

Nếu x chia 3 dư 1 => x-1 chia hết cho 3 => x^2-1 chia hết cho 3

Nếu x chia 3 dư 2 => x+1 chia hết cho 3 => x^2-1 chia hết cho 3

Vậy x^2-1 chia hết cho 3 với mọi x ko chia hết cho 3 , x thuộc Z

=> với mọi x ko chia hết cho 3 , x thuộc Z thì x^2 đồng dư vơi 1 (mod 3)

Tk mk nha

9 tháng 9 2016

Bà nhờ t mới làm chứ bài nhu thế này t thường không dám làm....

TH1 :

\(x\text{≡}1\left(mod3\right)\)

\(\Rightarrow x^2\text{≡}1^2\text{≡}1\left(mod3\right)\)

TH2 :

\(x\text{≡}2\left(mod3\right)\)

\(\Rightarrow x^2\text{≡}2^2\left(mod3\right)\)

\(\Rightarrow x^2\text{≡}4\left(mod3\right)\)

Mà \(4\text{≡}1\left(mod3\right)\)

\(\Leftrightarrow x^2\text{≡}1\left(mod3\right)\)

Vậy ...

9 tháng 9 2016

Ta có: x không chia hết cho 3  => x có dạng 3k + 1 hoặc 3k + 2 

TH:Khi x = 3k + 1  => x2 = (3k + 1)(3k + 1) = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1  => x2 = 1 (mod 3)

TH2: Khi x = 3k + 2  => x2 = (3k + 2)(3k + 2) = 9k2 + 6k + 4 = 9k2 + 6k + 3 + 1 = 3(3k2 + 2k + 1) + 1  => x2 = 1 (mod 3)

Từ cả 2 trường hợp =>  Nếu x không chia hết cho 3 thì x2 = 1 (mod 3)

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến

6 tháng 2 2016

nhiều quá

3) +)y=1=>1!=1=12

+)y=2=>1!+2!=1+1.2=3(loại vì ko là SCP)

+)y=3=>1!+2!+3!=1+1.2+1.2.3=9=32(thỏa mãn)

với y>4=>1!+2!+3!+...+y! tận cùng là 3 =>ko là SCP

Vì :1!+2!+3!+..+4!=1+1.2+1.2.3+1.2.3.4=33

và 5!;6!;...;y! tận cùng =0

=>1!+2!+3!+..+y! tận cùng là 3

vậy y=1;y=3

=>x=...

6 tháng 2 2016

trời ơi sao nhiều zậy??

21 tháng 2 2020

a) Ta có : x(x+1) là tích 2 số nguyên liên tiếp nên x(x+1) chia hết cho 2

Mà 1 không chia hết cho 2 nên x(x+1)+1 không chia hết cho 2.

Vậy ...

Các phần sau cũng có 1 số hạng không chia hết cho số kia còn các số khác chia hết cho số nên cả tổng đó không chia hết cho số kia, bạn tự chứng minh nhé!

13 tháng 12 2015

Ta có :abcdeg=ab.10000+cd.100+eg

=9999.ab+99.cd+ab+cd+eg

=﴾9999ab+99cd﴿+﴾ab+cd+eg﴿

Vì 9999ab+99cd chia hết cho 11 và ab+cd+eg chia hết cho 11

=>abcdeg chia hết cho 11 

Vậy nếu có ab+cd+egchia hết cho 11 thì abcdeg chia hết cho 11