K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

Ta có : (p-1).p.(p+1)\(⋮\)3        (vì là tích của 3 số tự nhiên liên tiếp)

Mà (p,3)=1 

\(\Rightarrow\left(p-1\right).\left(p+1\right)⋮3\)(1)

Vì p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là số chẵn 

Mặt khác p-1 và p+1 là hai số chẵn liên tếp 

nên trong hai số p-1 và p+1 luôn có một số chia hết cho 2 và một số chia hết cho 4 

\(\Rightarrow\left(p-1\right).\left(p+1\right)⋮2.4\)

\(\Rightarrow\left(p-1\right).\left(p+1\right)⋮8\)(2)

Mà (3,8)=1                                (3) 

Từ (1) ,(2) ,(3) \(\Rightarrow\)(p-1).(p+1)\(⋮\)3.8 

                      \(\Rightarrow\)(p-1).(p+1)\(⋮\)24       (đpcm)

25 tháng 5 2017

Ta có p - 1 p p + 1   ⋮   3    mà (p, 3) = 1 nên

            p - 1 p + 1   ⋮   3                     (1)

 p là số nguyên tố lớn hơn 3 nên p là số lẽ, p – 1 và p + 1 là hai số chẳn liên tiếp , có một số là bội của 4 nên tích của chúng chia hết cho 8  (2)

Từ (1) và (2) suy ra (p – 1)(p + 1) chia hết cho 2 nguyên tố cùng nhau là 3 và 8

Vậy (p – 1)(p + 1) chia hết cho 24.

22 tháng 12 2015

3)                         CM:p+1 chia hết cho 2

vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.

Vậy p+1 chia hết cho 2

                             CM:p+1 chia hết cho 3

Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)

Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3

Vậy p+1 chia hết cho 3

Mà ƯCLN(2,3) là 1

Vậy p+1 chia hết cho 2x3 là 6

Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.  

11 tháng 1 2016

Ví dụ : p là 5 thì (p-1)(p+1) = (5-1)(5+1)=4.6=24 .

Vì (5-1)(5+1) (tức 24) chia hết cho 24 → các SNT P lớn hơn 3 thì (p-1)(p+1) chia hết cho 24 

Tick nha !

24 tháng 11 2016

Một số chia hết cho 24 là một số chia hết cho 4,6

Mà chia hết cho 6 là chia hết cho 2 và 3

Theo đề bài thì P>3

Thì (P-1).(P+1) sẽ có 3 số hạng là:(P-1);P và(P+1) 

=>(P-1)(P+1) sẽ chia hết cho 3

P là số nguyên tố lớn hơn 3 nên P là số lẻ(P không thể là 2)

Mà P là số lẻ thì (P-1) hoặc (P+1) là số chẵn

Hiệu của (P+1) - (P-1) =2

Thì một trong hai số (P-1) hay (P+1) sẽ chia hết cho 4

=>P thuộc SNT và >3 thì chắc chắn (P-1)(P+1) chia hết cho 24

11 tháng 12 2017

Ta có (p-1). p.(p+1) chia het cho 3 ; mà ( p;3)=1 =>(p-1). (p+1)  3 (1) 
Ví p là số nguyên tố lớn hơn 3 => p là số lẻ =>p-1;p+1 là số chẵn (2) 
Từ (1) và (2) => (p-1). p.(p+1) chia hết cho hai số nguyên tố cùng nhau 3 và 8. 
Vậy (p-1). p.(p+1) chia het cho 24

11 tháng 12 2017

Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p - 1)(p + 1) chia hết cho 24.

Giải

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

21 tháng 12 2014

P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3 

Ta có :P không chia hết cho 2

=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)

Mặt khác:P không chia hết cho 3

Nếu P= 3k +1 thì P-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3

Tương tự: Nếu P= 3k+2 thì P+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)

Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24

21 tháng 12 2014

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

29 tháng 6 2016

Do p nguyên tố, p > 3 nên p không chia hết cho 3 => p2 không chia hết cho 3

=> p2 chia 3 dư 1

=> p2 - 1 chia hết cho 3 (1)

Do p nguyên tố, p > 3 nên p lẻ => p2 lẻ

=> p2 chia 8 dư 1

=> p2 - 1 chia hết cho 8 (2)

Từ (1) và (2), do (3,8)=1 => p2 - 1 chia hết cho 24

=> đpcm

Ủng hộ mk nha ^-^

10 tháng 12 2015

Goi b la so nghuyen to lon hon 3  chia cho 3 xay ra 3 truong hop                                                                                                                 truong hop 1:b chia het cho 3 suy ra b khong phai la so nghuyen to    (khong duoc)                                                                                  truong hop 2 :b chia cho 3 du 1    (duoc                                                                                                                                                  truong hop 3:b cia cho 3 du 2     (duoc)

24 tháng 6 2022

b) vì p là số nguyên tố>3(gt)

=>p có dạng 3k+1 howacj 3k+2

Nếu p=3k+2

=> p+4=3k+6 ⋮ 3

mà p+4 là số nguyên tố>3(do p>3)

=>p+4=3k+6 không thỏa mãn p+4 là số nguyên tố

Nếu p=3k+1

=> p+4=3k+5 (hợp lí)

vậy p+8 là hợp số

=>p+8=3k+9 ⋮ 3

=>p+8 là hợp số

c)vì p là số nguyên tố>3(gt)

=>p lẻ =>(p-1)(p+1) là tích 2 số chẵn liên tiếp

g/s với kϵN ta có 2k(2k+2)là tích 2 chẵn liên tiếp

2k(2k+2)=4k(k+1)

với kϵN ta có k(k+1)là tích 2 số tự nhiên liên tiếp

=> k(k+1)⋮2

=>4k(k+1)⋮8

=>tích 2 số tự nhiên liên tiếp luôn chia hết cho 8

=>(p-1)(p+1) ⋮ 8 (1)

ta có p-1; p; p+1 là 3 số tự nhiên liên tiếp

=>(p-1)p(p+1)⋮3

mà p là số nguyên tố>3(gt) => p không chia hết cho 3

=> (p-1)(p+1) ⋮ 3 (2)

từ (1),(2) kết hợp với 3; 8 là 2 số nguyên tố cùng nhau

=> (p-1)(p+1) ⋮ (3.8)

=> (p-1)(p+1) ⋮ 24