K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

\(\dfrac{x}{y}=\dfrac{z}{t}\\ \Rightarrow\dfrac{x}{z}=\dfrac{y}{t}\\ \Rightarrow\dfrac{x}{z}=\dfrac{y}{t}=\dfrac{x-y}{z-t}\\ \Rightarrow\dfrac{x^{1996}}{z^{1996}}=\dfrac{y^{1996}}{t^{1996}}=\left(\dfrac{x-y}{z-t}\right)^{1996}\\ \dfrac{x^{1996}}{z^{1996}}=\dfrac{y^{1996}}{t^{1996}}=\dfrac{x^{1996}+y^{1996}}{z^{1996}+t^{1996}}\\ \Rightarrow\left(\dfrac{x-y}{z-t}\right)^{1996}=\dfrac{x^{1996}+y^{1996}}{z^{1996}+t^{1996}}\)

21 tháng 11 2017

GTLN của Q = -1996/1997 <=> x = 0

GTLN của P = -1996/1997 <=> x = 0

k cho mk nha

18 tháng 6 2017

1.\(\frac{1996}{\left|x\right|+1997}\)có GTLN \(\Leftrightarrow\left|x\right|+1997\)có GTNN.

Mà \(\left|x\right|+1997\ne0\)

Ta thấy: \(\left|x\right|\ge0\forall x\in R\Rightarrow\left|x\right|+1997\ge1997\)

\(\Rightarrow\left|x\right|=0\)thì \(\left|x\right|+1997\)có GTNN  là \(1997\)

\(\Rightarrow\)GTLN của \(\frac{1996}{\left|x\right|+1997}\)là \(\frac{1996}{1997}\)khi x=0

 2.\(\frac{\left|x\right|+1996}{-1997}=\frac{-\left(\left|x\right|+1996\right)}{1997}\)

\(\Rightarrow\left|x\right|+1996\)phải có GTNN thì \(\frac{\left|x\right|+1996}{-1997}\)đạt GTLN

Mà \(\left|x\right|\ge0\forall x\in R\Rightarrow x=0\)thì \(\left|x\right|+1996\)có GTNN là \(1996\)

Vậy GTLN của \(\frac{\left|x\right|+1996}{-1997}\)là \(\frac{1996}{-1997}\)khi x=0

18 tháng 2 2018

mình cùng có tên là Minh Thư đó

14 tháng 10 2015

ngu thế ko biết lam à câu trả lời là: tao ko biet

 

26 tháng 6 2021

Đề là gì đây?

26 tháng 6 2021

Tìm max

25 tháng 2 2020

\(\left(\frac{x-10}{1994}-1\right)\)+\(\left(\frac{x-8}{1996}-1\right)\)+\(\left(\frac{x-6}{1998}-1\right)\)+\(\left(\frac{x-4}{2000}-1\right)\)+\(\left(\frac{x-2}{2002}-1\right)\)=\(\left(\frac{x-2002}{2}-1\right)\)+\(\left(\frac{x-2000}{4}-1\right)\)+\(\left(\frac{x-1998}{6}-1\right)\)+\(\left(\frac{x-1996}{8}-1\right)\)+\(\left(\frac{x-1994}{10}-1\right)\)

suy ra \(\frac{x-2004}{1994}\)+\(\frac{x-2004}{1996}\)+\(\frac{x-2004}{1998}\)+\(\frac{x-2004}{2000}\)+\(\frac{x-2004}{2002}\)=\(\frac{x-2004}{2}\)+\(\frac{x-2004}{4}\)+\(\frac{x-2004}{6}\)+\(\frac{x-2004}{8}\)+\(\frac{x-2004}{10}\)

suy ra  \(\frac{x-2004}{1994}\)+\(\frac{x-2004}{1996}\)+\(\frac{x-2004}{1998}\)+\(\frac{x-2004}{2000}\)+\(\frac{x-2004}{2002}\)\(\frac{x-2004}{2}\)\(\frac{x-2004}{4}\)\(\frac{x-2004}{6}\)\(\frac{x-2004}{8}\)\(\frac{x-2004}{10}\)=0

suy ra (x-2004) . ( \(\frac{1}{1994}\)+\(\frac{1}{1996}\)+\(\frac{1}{1998}\)+\(\frac{1}{2000}\)+\(\frac{1}{2002}\)-\(\frac{1}{2}\)-\(\frac{1}{4}\)-\(\frac{1}{6}\)\(\frac{1}{8}\)\(\frac{1}{10}\))=0

Vì  \(\frac{1}{1994}\)+\(\frac{1}{1996}\)+\(\frac{1}{1998}\)+\(\frac{1}{2000}\)+\(\frac{1}{2002}\)-\(\frac{1}{2}\)-\(\frac{1}{4}\)-\(\frac{1}{6}\)\(\frac{1}{8}\)\(\frac{1}{10}\) khác 0

nên x-2004=0 suy ra x=2004

27 tháng 2 2020

em cảm ơn

x=-2000           

3 tháng 8 2015

ta có \(1+\frac{x+5}{1995}+1+\frac{x+4}{1996}+1+\frac{x+3}{1997}=1+\frac{x+1995}{5}+1+\frac{x+1996}{4}+1+\frac{x+1997}{3}\)

        \(=\frac{x+2000}{1995}+\frac{x+2000}{1996}+\frac{x+2000}{1997}=\frac{x+2000}{5}+\frac{x+2000}{4}+\frac{x+2000}{3}\)

     \(=\left(x+2000\right)\left(\frac{1}{1995}+\frac{1}{1996}+\frac{1}{1997}\right)=\left(x+2000\right)\left(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\right)\)  (1)

                     Xét     \(\frac{1}{1995}+\frac{1}{1996}+\frac{1}{1997}\ne\frac{1}{5}+\frac{1}{4}+\frac{1}{3}vàx+2000=x+2000\) (2)

                                        từ \(\left(1\right)\Leftrightarrow x+2000=0\) ( để (1) là đúng )

                                                          \(\Rightarrow x=2000\)

5 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau do đã có \(y+z+t\ne0\), sau đó nhân dãy đã cho vs nhau. cái kia mũ 3 lên

5 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x+y+z}{y+z+t}=\frac{x-y+z}{y-z+t}=\frac{x+y-z}{y+z-t}\)

=> \(\frac{x+y+z}{y+z+t}=\frac{x}{t}\) (1)

=> \(\frac{x-y+z}{y-z+t}=\frac{x}{t}\) (2)

=> \(\frac{x+y-z}{y+z-t}=\frac{x}{t}\) (3)

Từ (1);(2) và (3) => đpcm