Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/b<1=>a<b
Muốn chứng minh /b<a+m/b+m ta phải chứng minh a(b+m)<b(a+m)
Ta có:a.(b+m)=ab+am
b.(a+m)=ba+bm
vì a<b=>am<bm
Vậy a/b<a+m/b+m
gọi UCLN của (5a+3b ; 13a+8b)=d (d thuộc N)
\(\Rightarrow\left(5a+3b\right)⋮d\Rightarrow\left(65a+39b\right)⋮d\)
\(\Rightarrow\left(13a+8b\right)⋮d\Rightarrow\left(65a+40b\right)⋮d\)
\(\Rightarrow\left(65a+40b\right)-\left(65a+39b\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
mà (a ; b)=1. Vậy (a ; b)=(5a+3b ; 13a + 8b)
Vậy nếu (a;b)=1 thì (5a+3b ; 13a + 8b)=1 (đpcm)
Gia su UC(a;a+b)=d=>a chia het cho d va a+b chia het cho d =>b chia het cho d. Vì a và b đều chia hết cho d nên d thuộc UC(a;b). Ma UCLN(a;b)=1=>d=1.Vay UCLN(a;a+b)=1. li ke cho minh nha
Lời giải:
Giả sử $a^2,a+b$ không nguyên tố cùng nhau.
Gọi $p$ là ước nguyên tố chung lớn nhất của $a^2,a+b$.
$\Rightarrow a^2\vdots p; a+b\vdots p$
$\Rightarrow a\vdots p; a+b\vdots p$
$\Rightarrow (a+b)-a\vdots p\Rightarrow b\vdots p$
Vậy $p$ là ước chung của $a,b$. Mà $(a,b)=1$ nên $p=1$ (vô lý do $p$ là ước nguyên tố)
Vậy điều giả sử là sai. Tức là $(a^2, a+b)=1$