\(2.\left(x+y\right)=5.\left(y+z\right)=3.\left(z+x\right)\)  thì <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

\(2.\left(x+y\right)=5.\left(y+z\right)=3.\left(z+x\right)\)

\(\Rightarrow\text{ }\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3.\left(z+x\right)}{30}\)

\(\Rightarrow\text{ }\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\text{ }\left(1\right)\)

\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\text{ }\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\text{ }\frac{y-z}{5}=\frac{x-y}{4}\)

2 tháng 11 2016

\(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)

\(\Leftrightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{z+x}{\frac{1}{3}}=\frac{x+y-z-x}{\frac{1}{2}-\frac{1}{3}}=\frac{z+x-y-z}{\frac{1}{3}-\frac{1}{5}}\)

\(\Leftrightarrow\frac{y-z}{\frac{1}{2}-\frac{1}{3}}=\frac{x-y}{\frac{1}{3}-\frac{1}{5}}\Rightarrow\frac{y-z}{\frac{1}{6}}=\frac{x-y}{\frac{2}{15}}\)

\(\Rightarrow6\left(y-z\right)=\frac{15\left(x-y\right)}{2}\)

\(\Leftrightarrow2\left(y-z\right)=\frac{5\left(x-y\right)}{2}\)

Nhân cả hai vế với \(\frac{1}{10}\) ta có:

\(\frac{2\left(y-z\right)}{10}=\frac{5\left(x-y\right)}{20}\Leftrightarrow\frac{y-z}{5}=\frac{x-y}{4}\)(ĐPCM)

1 tháng 11 2016

làm thì không biết đúng không mà chắc cugx được nhưng dài khi mô đi học đưa giấy cho chứ ghi trên này mỏi lắm 

8 tháng 10 2017

Bài 1:

\(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)

\(\Rightarrow\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(z+x\right)}{30}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\left(1\right)\)

\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\left(2\right)\)

Từ (1) và (2) => \(\frac{x-y}{4}=\frac{y-z}{5}\) (đpcm)

Bài 2: 

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\left(1\right)\)

Ta lại có: \(\frac{a^2}{b^2}=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}=\frac{a}{c}\left(2\right)\)

Từ (1) và (2) => \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\) (đpcm)

8 tháng 10 2017

Đúng rồi !!! 

Thank youuuuuuuuuuuuuuuu

29 tháng 8 2017

hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi

12 tháng 9 2018

Lí luận chung cho cả 3 câu :

Vì GTTĐ luôn lớn hơn hoặc bằng 0 

a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)

b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)

c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)

\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)

\(\Rightarrow2\left(x+y+z\right)=0,2\)

\(\Rightarrow x+y+z=0,1\)

Từ đây tìm đc x, y, z

a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)

hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)

d: =>x+1;x-2 khác dấu

Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)

Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)

e: =>x-2>0 hoặc x+2/3<0

=>x>2 hoặc x<-2/3

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

26 tháng 10 2019

2(x+y) = 5(y+z) = 3(z+x)
(x+y)/(1/2) = (y+z)/(1/5) = (z+x)/(1/3) = (x+y-z-x)/(1/2-1/3) = (z+x-y-z)/(1/3-1/5) 
=> (y-z)/(1/2-1/3) = (x-y)/(1/3-1/5) => (y-z)/(1/6) = (x-y)/(2/15) 
=> 6(y-z) = 15(x-y)/2 <=> 2(y-z) = 5(x-y)/2 <=> (y-z)/5 = (x-y)/

K ĐÚNG CHO MK NHÉ

10 tháng 12 2018

Giải :

Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)

Khi đó, ta có : 4(2013k - 2014k)(2014k - 2015k) = 4. (-k).(-k) = 4.k2   (1)

                      (2015k - 2013k)2 = (2k)2 = 22.k2 = 4k2                          (2)

Từ (1) và (2) suy ta 4(x - y)(y - z) = (z - x)2

10 tháng 12 2018

huhu!... Mk biết làm roi nha mb :>))