Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khai triển ra, ta dc:
25^n+5^n-18^n-12^n (1)
=(25^n-18^n)-(12^n-5^n)
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)
H cx tương tự
Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7
Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
n^3+5n
=n(n2+5)
=(n-1)n(n+1)+6n
Ta có tích của 3 số nguyên liên tiếp chia hết cho 6 bởi vì vừa chia hết cho 2, vừa chia hết cho 3.
Mặt khác 6n chia hết cho 6, do đó:
n3 + 5n chia hết cho 6
Ta có \(n^3+5n=n\left(n^2+5\right)=n\left(n^2-1+6\right)\)
\(=n\left(n^2-1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)+6n\)
Vì \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà \(\left(2;3\right)=1\)\(\Rightarrow n\left(n-1\right)\left(n+1\right)\) chia hết cho 6
\(6n\) chia hết cho 6
\(\Rightarrow n\left(n-1\right)\left(n+1\right)+6n\) chia hết cho 6
Vậy \(n^3+5n\) chia hết cho 6
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
a)
Ta có: 13n+1 - 13n
= 13n . 13 - 13n
= 13n (13 - 1)
= 13n . 12 \(⋮\) 12
Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n
b)
Ta có: n3 - n = n (n2 - 1)
= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)
Ta có: n3-n=n.(n2-1)=n.(n-1).(n+1)=(n-1).n.(n+1)
Ta thấy: n-1 và n là 2 số tự nhiên liên tiếp.
=>(n-1).n chia hết cho 2
=>(n-1).n.(n+1) chia hết cho 2(1)
n-1, n và n+1 là 3 số tự nhiên liên tiếp
=>(n-1).n.(n+1) chia hết cho 3(2)
Từ (1) và (2) ta thấy:
(n-1).n.(n+1) chia hết cho 2 và 3
mà (2,3)=1
=>(n-1).n.(n+1) chia hết cho 6
=>n3-n chia hết cho 6
=>ĐPCM
ta có :
n.(n^2-1)=n.(n-1).(n+1)
Vì 3 số tự nhiên liên tiếp luôn chia hết cho 3=>n.(n-1).(n+1)chia hết cho 3
2 số tự nhiên nhiên liên tiếp luôn chia hết cho 2=>n.(n+1)chia hết cho 2=>n.(n+1).(n+2)chia hết cho 2
Từ 2 ý trên =>n.(n+1).(n+2)chia hết cho (2.3)
=>n.(n+1).(n+2)chia hết cho 6
Vậy n.(n+1).(n+2)chia hết cho 6
Ta có:
\(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Vì n-1;n;n+1 là 3 số nguyên liên tiếp nên (n-1)n(n+1) chia hết cho 6
=>\(n^3-n\) chia hêt cho 6 (đpcm)
ta có: n^3-n=n(n^2-1)=n(n-1)(n+1)
với mọi n thuộc z, khi chia cho 2xayr ra 2 trường hợp:
1:n chia hết cho 2
2:n chia hết cho 2 dư 1
với mọi n thuộ z, khi chia cho 3 xay ra 3 trường hợp:
1:n chia hết cho 3
2:n chia hết cho 3 dư 1
3:n chia hết cho 3 dư 2
vậy trong mọi trường hợp n^3-n chia hêt cho 2 và 3
do 2vaf 3 là hai số nguyên tố cùng nhau
suy ra n^3-n chia hết cho 2*3=6
n3-n=n(n2-1)=(n-1)n(n+1)
trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3
=>(n-1)n(n+1) chia hết cho 3
trong 2 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
=>(n-1)n(n+1) chia hết cho 2
Vì (2;3)=1=>n3-n chia hết cho 6
=>đpcm