K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

gọi d là ước chung của n và n + 4 . 

suy ra n +4 - n = 4 cũng chia hết cho d 

theo bài ra d lại là số lẻ vậy d chỉ có thể bằng 1

Ước chung của 2 số là 1 suy ra 2 số là 2 số nguyên tố cùng nhau

1 tháng 11 2021

2 số 3x + 4 và 2x + 3 là hai số nguyên tố cùng nhau vì

Ta thấy :

2x và 3x là số có hai chữ số cộng thêm 4 thành một bội và sẽ có một số nguyên tố 

Ta sẽ có thừa số nguyên tố 2x = 2x . 1x + 4 ( là số hạng nguyên tố ) và 3x = 3x + 1x + 4

Dựa vào thừa số nguyên tố ta tìm được x 

x = 1 + 32 = 10

x = 1 + 42 = 17

22 tháng 12 2019

mk chắc chắn 100% là mk ko bt

a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)

\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\) 

\(\Rightarrow n+2;n+3NTCN\)

b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)

\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2n+3;3n+5NTCN\)

16 tháng 12 2021

ko biet

25 tháng 12 2021

Vì 2n+1 là số lẻ

và 4n+4 là số chẵn

nên 2n+1 và 4n+4 là hai số nguyên tố cùng nhau

10 tháng 1 2016

Gọi d thuộc Ư(6n+5,4n+3)

=>6n+5 chia hết cho d ; 4n+3 chia hết cho d

=>2(6n+5) chia hết cho d ; 3(4n+3) chia hết cho d

=>(12n+10)-(12n+9) chia hết cho d

=> 1 chia hết cho d

=>d=1

Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau

23 tháng 12 2023

Gọi UWCLN (5n+7;3n+4)=d(dϵN*)
=>(5n+7)⋮d=>3(5n+7)⋮d=>(15n+21)⋮d
=>(3n+4)⋮d=>5(3n+4)⋮d=>(15n+20)⋮d
=>[(25n+21)-(15n+20)]⋮d
=>1⋮d mà dϵN*=>d=1
=>UCLN(5n+7;3n+4)=1
vậy 5n+7 và 3n+4 là 2 số nguyên tố cùng nhau
Chúc bạn học zỏi

24 tháng 12 2023

thank you 

mình cũng chúc bạn

 

26 tháng 10 2017

Câu a) thôi, câu b) chị chưa nghĩ được!

+) 2 số lẻ liên tiếp có dạng là 2n + 1 và 2n + 3 ( n thuộc N )

+) Đặt d thuộc ƯC ( 2n + 1; 2n + 3 ) ( d thuộc N)

=> 2n + 1 chia hết cho d

     2n + 3 chia hết cho d

Vậy ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d

<=> 2 chia hết cho d

=> d thuộc Ư ( 2 )

=> d thuộc {1; 2}

Nhưng d là số lẻ => d ≠ 2 => d = 1

Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.

20 tháng 10 2023

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.

20 tháng 11 2018

Ừ thì do n+1 và n+2 là 2 stn liên tiếp nên chúng luôn phải nguyên tố cùng nhau hoi