K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2015

Viết: 

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{8}+...+\frac{1}{n}=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+...+\frac{1}{2^4}\right)+...+\frac{1}{n}\)

Nhận xét: \(\frac{1}{3}+\frac{1}{2^2}>\frac{1}{2^2}.2\)

               \(\frac{1}{5}+...+\frac{1}{2^3}>\frac{1}{2^3}+...+\frac{1}{2^3}=\frac{1}{2^3}.2^2\)

               \(\frac{1}{9}+...+\frac{1}{2^4}>\frac{1}{2^4}+...+\frac{1}{2^4}=\frac{1}{2^4}.2^3\)

....

Tiếp tục như vậy, ta được Vế trái > \(1+\frac{1}{2}+\frac{1}{2^2}.2^1+\frac{1}{2^3}.2^2+\frac{1}{2^4}.2^3+...+\frac{1}{2^k}.2^{k-1}+....=1+\frac{1}{2}.k+...\)

Để vế trái > 1000 =>  k > 1998 => ta có thể chọn k = 1999

Khi đó ,có thể  chọn n = 2k = 21999

Vậy luôn tồn tại số tự nhiên n thỏa mãn yc

12 tháng 10 2016

bạn bạn trả lời hay wa!!!!!!!! thanks nha!!!!!!!!!!!!!!!!!!!

b: \(=\dfrac{1}{2}-\left(\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{2016}=\dfrac{1}{2016}\)

14 tháng 4 2017

a) Ta có:

\(\frac{1}{n-1}-\frac{1}{n}=\frac{n-\left(n-1\right)}{n\left(n-1\right)}=\frac{1}{n\left(n-1\right)}>\frac{1}{n.n}=\frac{1}{n^2}\left(1\right)\)

\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}< \frac{1}{n.n}=\frac{1}{n^2}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:

\(\frac{1}{n\left(n-1\right)}>\frac{1}{n^2}>\frac{1}{n\left(n+1\right)}\)

Hay \(\frac{1}{n-1}-\frac{1}{n}>\frac{1}{n^2}>\frac{1}{n}-\frac{1}{n+1}\) (Đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 8 2024

Lời giải:

Để $B$ không rút gọn được thì $n+1, n-3$ là 2 số nguyên tố cùng nhau.

$\Rightarrow ƯCLN(n+1, n-3)=1$

Gọi $d=ƯCLN(n+1, n-3)$

$\Rightarrow n+1\vdots d; n-3\vdots d$
$\Rightarrow (n+1)-(n-3)\vdots d\Rightarrow 4\vdots d$

Để 2 số nt cùng nhau thì $(4,d)=1$

$\Rightarrow n+1\not\vdots 2$

$\Rightarrow n+1$ lẻ 

$\Rightarrow n$ chẵn.