Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số đó có dạng ab, ta có :
ab+ba=a*10+b+b*10+a=(a*10+a)+(b*10+b)=a*11+b*11
Vì a*11chia hết cho 11; b*11 chia hết cho 11
=> a*11+b*11 chia hết cho 11
Vậy lấy 1 số có 2 chữ số rồi cộng với số gồm 2 chữ số ấy viết theo thứ tự ngược lại ta luôn được 1 số chia hết cho 11
mà cái gì có trong tương tự thì mình ghi lại cg đc chớ sao đâu.mình thấy bình thường mà. đó đâu phải bài giải độc quyền đâu
E = 9(x + 5)2 – (x + 7)2
= [3(x + 5)]2 – (x + 7)2
= [3(x+5) + x +7][3(x+5) – (x+7)]
= (4x + 22)(2x + 8)
= 4(2x + 11)(x + 4)
E = 9(x + 5)2 – (x + 7)2
= [3(x + 5)]2 – (x + 7)2
= [3(x+5) + x +7][3(x+5) – (x+7)]
= (4x + 22)(2x + 8)
= 4(2x + 11)(x + 4)
Gọi số có 2 chữ số đó là ab
=> Số sau khi viết thêm là abba
Ta có: abba = 1000a + 100b + 10b + a = 1001a + 110b
= 11.91.a + 11.10.b = 11.(91a + 10b) chia hết cho 11
Vậy abba chia hết cho 11 (Đpcm)
Gọi số tự nhiên có hai chữ số là ab(a ≠0)
Số viết theo thứ tự ngược lại của ab là ba
Ta có: ab = 10a + b ; ba = 10b + a
Do đó: ab+ ba= (10a + b) + (10b + a) = 11a + 11b = 11.(a + b)
Vì 11.(a + b) ⋮ 11 nên ab + ba luôn chia hết cho 11
a ) Gọi số đó là ab . Theo đề ta có :
ab + ba = 10 . a + b + 10 . b + a = 11 . a + 11 . b = 11 ( a + b ) chia hết cho 11
Vậy ( đpcm )
b ) Theo đề ta có :
ab + cd chia hết cho 11
ab + cd + ab . 99 chia hết cho 11
ab . 100 + cd chia hết cho 11
abcd chia hết cho 11 .
Vậy ( đpcm )
Gọi số có hai chữ số đó là \(\overline{ab}\left(0\le b\le a;a\ne0\right)\)
Ta có : \(\overline{ab}+\overline{ba}=\left(10a+b\right)+\left(10b+a\right)\)
\(=10a+10b+a+b=10\left(a+b\right)+\left(a+b\right)\)
\(=\left(a+b\right)\left(10+1\right)=\left(a+b\right).11⋮11\)
\(\Rightarrow\overline{ab}+\overline{ba}⋮11\)
Vậy \(\overline{ab}+\overline{ba}⋮11\)
Gọi số có hai chữ số đó có dạng \(\overline{ab}\left(0< b< a;a\ne0\right)\)
Ta có \(\overline{ab}+\overline{ba}=\left(10a+b\right)+\left(10b+a\right)\)
\(=10a+10b+a+b=10\left(a+b\right)+\left(a+b\right)\)
\(=\left(a+b\right)+\left(10+1\right)\)
\(=\left(a+b\right).11⋮11\)
\(=>\overline{ab}+\overline{ba}⋮11\)
Vậy \(\overline{ab}+\overline{ba}⋮11\left(dpcm\right)\)