Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử hình thang là ABCD
trung điểm của cạnh AD là E
EF // AB // DC (F thuộc BC)
Gọi I là gia điểm AC , EF
Ta có
EI//DC (I thuộc EF , EF//DC)
EA=ED
=> EI là đường trung bình của tam giác ACD
=>AI=IC
Ta có
IF//AB (I thuộc EF,EF//AB)
AI=IC (cmt)
=> IF là đường trung bình của tam giác ABC
=>BF=FC
Gọi K là trung điểm BD và EF
ta có
BF=FC
KF//DC(K thuộc EF, EF//DC)
=>KF là đường trung bình của tam giác BDC
=>BK=KD
Xong rồi nha !!!!
1 T I C K nha
____________________________CHÚC BẠN HỌC TỐT _________________________
Xét hình thang ABCD có AB // CD.
E là trung điểm AD, đường thẳng đi qua E song song với AB cắt BC tại F, AC tại K, BD tại I.
Vì E là trung điểm AD nên EF// AB
Suy ra: BF = FC (tính chất đường trung bình hình thang)
Trong ∆ ADC ta có: E là trung, điểm của cạnh AD
EK // DC
Suy ra: AK = KC (tính chất đường trung bình của tam giác)
Trong ∆ ABD ta có: E là trung điểm của cạnh AD
EI // AB
Suy ra: BI = ID (tính chất đường trung bình của tam giác)
Vậy đường thẳng song song với 2 đáy, đi qua trung điểm E của cạnh bên AD của hình thang ABCD thì đi qua trung điểm của cạnh bên BC và trung điểm hai đường chéo AC, BD.
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Lưu Đức Mạnh - Toán lớp 8 - Học toán với OnlineMath
Vẽ hình thang ABCD, AB song song với CD. Lấy M, N lần lượt là trung điểm của BD và AC. Lấy H và K lần lượt là trung điểm của BC và AD.
Xét tam giác BCD có: - KB = KC (gt)
- MB = MD (gt)
MK là trung bình của BCD.
MK song song và bằng ½ CD
Tương tự như trên ta có:
- HN là trung bình ADC. HN song song và bằng ½ CD.
- HM là trung bình ABD. HM song song và bằng ½ AB.
- KN là trung bình của CAB. KN song song và bằng ½ AB.
H, M, N, K thẳng hàng (tiên đề Ơ – clit)
HK là trung bình của hình thang ABCD (tự chứng minh).
HK = (AB + CD)/2 (t/c)
HM + NK + KM + HN = 2HK.
mà MN = HK – HM – NK
MN = (HM + NK + KM + HN)/2 – HM – NK
= (AB + CD)/2 – AB
= 1/2AB – AB + CD/2
= CD/2 – 1/2AB
= (CD – AB)/2 (đpcm)
1.
O A B D C E
+) Tứ giác ABCD kà hình thang cân => góc ADC = BCD và AD = BC
=> tam giác ODC cân tại O => OD = OC
mà AD = BC => OA = OB
+) tam giác ODB và OCA có: OD = OC; góc DOC chung ; OB = OA
=> Tam giác ODB = OCA (c - g - c)
=> góc ODB = OCA mà góc ODC = OCD => góc ODC - ODB = OCD - OCA
=> góc EDC = ECD => tam giác EDC cân tại E => ED = EC (2)
Từ (1)(2) => OE là đường trung trực của CD
=> OE vuông góc CD mà CD // AB => OE vuông góc với AB
Tam giác OAB cân tại O có OE là đường cao nên đồng thời là đường trung trực
vậy OE là đường trung trực của AB
Câu hỏi của Lưu Đức Mạnh - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài giải tại đây nhé.
Xét tứ giác ABDC (AB // CD, AB < CD). Gọi M là giao điểm của AC và BD, N là giao điểm của AD và BC; H, K lần lượt là giao điểm của MN với AB, CD. Ta sẽ chứng minh H, K theo thứ tự là trung điểm của AB, CD.
Áp dụng định lý Thales cho các tam giác MCK, MDK, NCK, NDK với AB // CD ta có:
\(\frac{AH}{CK}=\frac{MH}{MK};\frac{BH}{DK}=\frac{MH}{MK};\)
\(\frac{BH}{CK}=\frac{NH}{NK};\frac{AH}{DK}=\frac{NH}{NK}.\)
Do đó: \(\frac{AH}{CK}=\frac{BH}{DK};\frac{BH}{CK}=\frac{AH}{DK}\)
\(\Rightarrow\frac{AH}{CK}.\frac{AH}{DK}=\frac{BH}{DK}.\frac{BH}{CK}\)
\(\Rightarrow AH^2=BH^2\)
\(\Rightarrow AH=BH\) (Do AH, BH > 0)
\(\Rightarrow CK=DK.\)
Từ đó suy ra H, K lần lượt là trung điểm của AB, CD (đpcm)