K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

mấy bn xem mk giải thử chứ mk ko bít đúng ko luôn !!! hjhj

ta có: 0,7x4+0,2x2-5+0,3x4-1/5x2+8

       = 0,7x4+0,3x4+0,2x2-1/5x-5+8

      = x4+3 lớn hơn hoặc bằng 3 >0 vì x4 lớn hơn hoặc bằng 0 với x E R

xem rùi cho ý kiến đừng nói này nói nọ !!!!

duyệt đi

31 tháng 3 2019

đặt A= 0,7x^4+0,2^2-5-0,3x^4-0,2x^2+8

        =0,4x^4+3

        vì x^4 luôn dương với mọi x

suy ra biểu thức A luôn dương với mọi giá trị của x (đpcm)

AH
Akai Haruma
Giáo viên
12 tháng 5 2021

Lời giải:

$(1,2x^4+0,4x^2-3)-(0,2x^4+0,4x^2-9)=x^4+6=(x^2)^2+6\geq 0+6>0$ với mọi giá trị thực của $x$

Do đó ta có đpcm.

12 tháng 5 2021

C trợ giúp câu mới nhất em gửi trong inb nhé !

11 tháng 3 2018

bai nay kho qua

11 tháng 3 2018

Ta có \(\left(0,7x^4+0,2x^2-5\right)-\left(-0,3x^4+\frac{1}{5}x^2-8\right)\)\(0,7x^4+0,2x^2-5+0,3x^4-\frac{1}{5}x^2+8\)

\(\left(0,7x^4+0,3x^4\right)+\left(0,2x^2-\frac{1}{5}x^2\right)+\left(8-5\right)\)= x4 + 3

Ta có x4 \(\ge\)0 với mọi gt của x => x4 + 3 > 0 với mọi gt của x (đpcm)

18 tháng 5 2021

\(x^4+2x^2+1=\left(x^2+1\right)^2\ge1>0\forall x\) ( đpcm ) 

18 tháng 5 2021

`x^4+2x^2+1`

`=(x^2)^2 + 2.x^2 .1 + 1^2`

`=(x^2+1)^2 > 0 forall x`.

Ta có: \(1.2x^4+0.4x^2-3-0.2x^4-0.4x^2+9\)

\(=x^4+6\ge6>0\forall x\)(đpcm)

 

12 tháng 5 2021

0∀x(đpcm)?

ta có x2+x+1= x2+x+1+x-x= (x+1)2-x

Vì (x+1)2 \(\ge\)0   và (x+1)2>x 

nên x2+x+1 luôn luôn dương với mọi giá trị của x

29 tháng 3 2018

xét x>0 suy ra biểu thúc có gi trị dương

xét x,0

ta có \(x^2\)>0

suy ra \(x^2\)+x > 0

suy ra \(x^2\)+x+1 luôn luôn  dương với mọi gi trị của x

\(\left(1\right)\)Tại x=-1, ta có: \(P=3x^2+5=3\left(-1\right)^2+5=3+5=8\)

Tại x=0, ta có: \(P=3x^2+5=3.0^2+5=0+5=5\)

Tại x=3, ta có: \(P=3x^2+5=3.3^2+5=3.9+5=27+5=32\)

(2) Ta có: \(P=3x^2+5\)mà  \(x^2\ge0\)với mọi x => 3x^2 \(\ge\)0 với mọi x 

Lại có 5 dương => P \(\ge\)0 hay đa thức P luôn dương với mọi giá trị của x