Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
\(=\frac{x^2+x^2a+a+a^2+a^2x^2+1}{x^2-x^2a-a+a^2+a^2x^2+1}\)
\(=\frac{x^2\left(1+a+a^2\right)+\left(1+a+a^2\right)}{x^2\left(1-a+a^2\right)+\left(1-a+a^2\right)}\)
\(=\frac{\left(1+a+a^2\right)\left(1+x^2\right)}{\left(1-a+a^2\right)\left(1+x^2\right)}=\frac{1+a+a^2}{1-a+a^2}\) không phụ thuộc vào x
a/ \(P=\frac{\left(x^2+a\right)\left(1+a\right)a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
\(=\frac{\left(a^2+a+1\right)\left(x^2+1\right)}{\left(a^2-a+1\right)\left(x^2+1\right)}=\frac{a^2+a+1}{a^2-a+1}\)
b/ Từ phân số rút gọn thì ta thấy P không phụ thuộc vào x và có nghĩa với mọi x.
Ta lại có \(a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy P không phụ thuộc vào x và có nghĩa với mọi x và a
Ta có :
\(\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
\(=\frac{x^2+x^2a+a+a^2+a^2x^2+1}{x^2-x^2a-a+a^2+a^2x^2+1}\)
\(=\frac{\left(x^2+1\right)+\left(x^2a+a\right)+\left(a^2+a^2x\right)}{\left(x^2+1\right)-\left(x^2a+a\right)+\left(a^2+a^2x^2\right)}\)
\(=\frac{\left(x^2+1\right)+a\left(x^2+1\right)+a^2\left(x^2+1\right)}{\left(x^2+1\right)-a\left(x^2+1\right)+a^2\left(x^2+1\right)}\)
\(=\frac{\left(x^2+1\right)\left(a^2+a+1\right)}{\left(x^2+1\right)\left(a^2-a+1\right)}=\frac{a^2+a+1}{a^2-a+1}\)
Tử của P: \(T=x^2\left(1+a\right)+a\left(1+a\right)+a^2x^2+1=\left(1+a+a^2\right)x^2+\left(a^2+a+1\right)\)
\(T=\left(a^2+a+1\right)\left(x^2+1\right)\)
Mẫu của P:
\(M=x^2\left(1-a\right)-a\left(1-a\right)+a^2x^2+1=\left(1-a+a^2\right)x^2+\left(a^2-a+1\right)\)
\(M=\left(a^2-a+1\right)\left(x^2+1\right)\)
Ta có: \(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow\left(x^2+1\right)\ne0\forall x\)
a)\(P=\frac{T}{M}=\frac{\left(a^2+a+1\right)\left(x^2+1\right)}{\left(a^2-a+1\right)\left(x^2+1\right)}=\frac{\left(a^2+a+1\right)}{\left(a^2-a+1\right)}\)
b) từ (a) giá trị của P không con x trong biểu thức => P không phụ thuộc x--> dpcm
a, = x^2+a+x^2a+a^2+a^2x^2+1/x^2-a-x^2a+a^2+a^2x^2+1
= (x^2+1).(a^2+a+1)/(x^2+1)(a^2-a+1) = a^2+a+1/a^2-a+1
=> phân thức trên ko phụ thuộc vào biến x
=> ĐPCM
Nếu đúng thì k mk nha
a: \(=6x^2-9x+14x-21-4x^2+20x-25-2x\left(x+6\right)+5-31x\)
\(=2x^2-6x-41-2x^2-12x\)
=-18x-41
b: \(=2x^2-6x-2x^2+6x+14=14\)
c: \(=x^3+1-x^3+1=2\)
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)