K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

giải hộ mình nhé, mai mình nộp rồi

1 tháng 8 2017

Ta có : \(\frac{5.5}{1.6}+\frac{5.5}{6.11}+\frac{5.5}{11.16}+\frac{5.5}{16.21}\)

\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}\right)\)

\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}\right)\)

\(=5\left(1-\frac{1}{21}\right)\)

\(=5.\frac{20}{21}=\frac{100}{21}\)

1 tháng 8 2017

Gọi \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{17.18}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{17}-\frac{1}{18}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{17}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{18}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{18}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{18}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{18}-1-\frac{1}{2}-\frac{1}{3}-.....-\frac{1}{9}\)

\(=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+....+\frac{1}{18}\)

Ta thấy : \(\frac{1}{10}>\frac{1}{19};\frac{1}{11}>\frac{1}{19};\frac{1}{12}>\frac{1}{19};....;\frac{1}{18}>\frac{1}{19}\)

\(\Rightarrow A=\frac{1}{10}+\frac{1}{11}+...+\frac{1}{18}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}\)(có 9 số \(\frac{1}{19}\) )

\(\Rightarrow A>9.\frac{1}{19}=\frac{9}{19}\)(đpcm)

14 tháng 7 2016

\(A=\)\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{51.56}\)

\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{51.56}\)

\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{51}-\frac{1}{56}\)

\(5A=1-\frac{1}{56}=\frac{55}{56}\)

\(A=\frac{55}{56}\div5=\frac{55}{56}.\frac{1}{5}=\frac{11}{56}\)

12 tháng 4 2018

Ta có : 

\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)

\(S=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)

\(S=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)

\(S=5\left(1-\frac{1}{26}\right)\)

\(S=5.\frac{25}{26}\)

\(S=\frac{125}{26}\)

Vậy \(S=\frac{125}{26}\)

Chúc bạn học tốt ~ 

12 tháng 4 2018

S=125/26

26 tháng 7 2015

S= 1/2 - 1/2 + 1/3 - 1/3 + 1/4 - 1/4 +...+ 1/50 - 1/50

S=       0     +       0      +      0      +...+        0

S=  0

4 tháng 6 2020

\(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{49.49}+\frac{1}{50.50}\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{50}-\frac{1}{50}\)

\(=0+0+...+0\)

\(=0\)

15 tháng 8 2016

A = 1/5×5 + 1/6×6 + ... + 1/100×100

A < 1/4×5 + 1/5×6 + ... + 1/99×100

A < 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/99 - 1/100

A < 1/4 - 1/100 < 1/4 (1)

A = 1/5×5 + 1/6×6 + ... + 1/100×100

A > 1/5×6 + 1/6×7 + ... + 1/100×101

A > 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/100 - 1/101

A > 1/5 - 1/101 > 1/5 - 1/30

A > 6/30 - 1/30 = 1/6 (2)

Từ (1) và (2) => 1/6 < A < 1/4 ( đpcm)

10 tháng 4 2016

a, \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)

\(=\frac{1}{5}-\frac{1}{25}\)

\(=\frac{4}{25}\)

b, \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

Gọi biểu thức trên là A 

6 tháng 3 2016

\(\frac{5x}{1.6}+\frac{5x}{6.11}+\frac{5x}{11.16}+\frac{5x}{16.21}=\frac{1}{25}\)

\(x\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}\right)=\frac{1}{25}\)

\(x\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}\right)=\frac{1}{25}\)

\(x\left(1-\frac{1}{21}\right)=\frac{1}{25}\)

\(\frac{20}{21}x=\frac{1}{25}\)

\(x=\frac{1}{25}:\frac{20}{21}=.....\)

22 tháng 5 2017

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

22 tháng 5 2017

Đây là tính chứ chứng minh cái gì ? 

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)