Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/10 + 1/12 + 1/14 + ... + 1/20 > 1/2
= 1/2.5 + 1/2.6 + 1/2.7 + ... + 1/2.10 > 1/2
= 1/2 . 1/5 + 1/2 . 1/6 + 1/2 . 1/7 + ... + 1/2 . 1/10 > 1/2
= 1/2 . ( 1/5 + 1/6 + 1/7 + ... + 1/10 ) > 1/2 => (đpcm)
1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50
=1/1-1/2+1/3-1/4+...+1/49-1/50
=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)
=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)
=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25
=1/26+1/27+...+1/50 (đpcm)
bn ơi bn có thê
rhuowngs dẫn mình
làm ko vì
mai mình ucngx
có bài này
Ta có:\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..........+\frac{1}{64}\)
=\(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+.........+\left(\frac{1}{33}+......+\frac{1}{64}\right)\)
\(>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+...+\left(\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}\right)\)
=\(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
=4
Vậy \(1+\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{64}>4\)
3/10=3/9*10
3/11=3/10*11
3/12=3/11*12
3/13=3/12*13
3/14=3/13*14
suy ra 3/10+3/3/11+....+3/14 nhỏ hơn 3/9*10+....+3/13*14
suy ra 3/9*10 + 3/10*11+....+3/13*14
=1/9-1/10+....+1/13-1/14
=1/9-1/14
tự viết kết quả nhé
Ta có: 1/4+1/5+...+1/10>1/10.7=7/10
1/11+1/12+...+1/19>1/20.9=9/20
Kết hợp lại ta có B= 1/4+1/5+1/6+...+1/19>7/10+9/20=23/20>1.Vậy B>1
ta co 1/4+1/5+......+1/10>1/10.7=7/10
1/11+1/12+.....1/19>1/20.9=9/20
kết hợp lại ta có mB=1/4+1/5+1/6+......1/19>7/10+9/20=23/20>1 vậy B>1
Ta có :
\(\frac{1}{10}>\frac{1}{20}\)
\(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\) \(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+.....+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+....+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)(1)
.....
\(\frac{1}{19}>\frac{1}{20}\)
Ta có :
\(\frac{1}{20}>\frac{1}{30}\)
\(\frac{1}{21}>\frac{1}{30}\)
\(\frac{1}{22}>\frac{1}{30}\) \(\Rightarrow\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+....+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+....+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)(2)
........
\(\frac{1}{29}>\frac{1}{30}\)
Ta có :
\(\frac{1}{30}>\frac{1}{40}\)
\(\frac{1}{31}>\frac{1}{40}\) \(\Rightarrow\frac{1}{30}+\frac{1}{31}+....+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)(3)
.........
\(\frac{1}{39}>\frac{1}{40}\)
Từ 1 , 2 , 3 ,
=> \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+.....+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)
=> ....... > 1