Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E = 3 / 4+ 3 / 28 +......+ 3 / n . ( n + 3 )
E = 3 / 1 . 4 + 3 / 4 . 7 +...+ 3 / n ( n + 3 )
E = 1 -1/ 4 + 1 / 4 - 1 /7 +......+ 1 / n - 1 / n + 3
E = 1 - 1 / n + 3
E = n + 2 / n + 3
1.
\(10^{28}+8=\left(10^3\right)^{25}+8=8^{25}.125^{25}+8⋮8\)
Mặt khác:
\(10^{28}+8=10^{28}-1+9=\left(10-1\right).A+9=9A+9⋮9\)
\(\)Mà \(\left(8;9\right)=1\Rightarrow10^{28}+8⋮72\)
Bài 3:
a: \(\dfrac{-21}{28}=\dfrac{-3}{4}=\dfrac{-39}{52}\)
b: \(\dfrac{-1313}{2121}=\dfrac{-13}{21}\)
\(\dfrac{-131313}{212121}=\dfrac{-13}{21}\)
Do đó: \(\dfrac{-1313}{2121}=-\dfrac{131313}{212121}\)
Ta cần chứng minh:\(1^3+2^3+3^3+....+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
Với \(n=1\Rightarrow1=1\)(đúng)
Giả sử bài toán đúng với \(n=k\left(n\inℕ^∗\right)\) thì ta có:
\(1+2^3+3^3+...+k^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)
Ta cần chứng minh đề bài đúng với \(n=k+1\) tức là:
\(1^3+2^3+3^3+....+n^3=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)
Đặt \(A_{k+1}=1^3+2^3+...+\left(k+1\right)^3\)
\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\) [theo (1)]
\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
\(\Rightarrow\left(2\right)\) đúng
\(\Rightarrow\left(1\right)\) đúng.
Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{n^2\cdot\left(n+1\right)^2}{4}\)
\(\Rightarrow1^3+2^3+...+n^3=\frac{n^2\cdot\left(n+1\right)^2}{4}\left(đpcm\right)\)
ta có 1/23<1/1*2*3 1/33<1/2*3*4 1/43<1/3*4*5 .... 1/n3<1/(n-1)*n*(n+1)
Vậy=1/23+1/33+...+1/n3<1/1*2*3+1/2*3*4+.....1/(n-1)*n*(n+1)
Ta có 1/1*2*3 + 1/2*3*4 +...+ 1/(n-1)*n*(n+1)
=1/2*(1/1*2-1/2*3 + 1/2*3-1/3*4 +...+ 1/(n-1)*n-1/n*(n+1)
=1/2*(1/2- 1/6 + 1/6 -1/12+..........+1/(n-1)*n-1/n*(n+1)
=1/2*(1/2-1/n*(n+1))
=1/4-1/2n*(n+1)<1/4
Vì 1/2^3+1/3^3+..+1/n^3<1/4-1/2n*(n+1)<1/4
nên =>1/2^3+1/3^3+...+1/n^3<1/4
\(< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left(n-1\right).n}\)
\(< 2\cdot\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(< \frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{4\cdot5}-\frac{1}{5\cdot6}+...+\frac{2}{\left(n-1\right)\cdot n}\)
\(< \frac{1}{2}\cdot\left(\frac{1}{2}-\frac{2}{\left(n-1\right)\cdot n}\right)\)
\(< \frac{1}{4}-\frac{1}{\left(n-1\right)\cdot n}\)
ĐPCM
d) Gọi d là ƯCLN của n+1 và 2n+3, ta có:
(2n+3)-(n+1) chia hết cho d
=> (2n+3)-2(n+1) chia hết cho d
=> 2n+3-2n-2 chia hết cho d
=> 2n-2n+3-2 chia hết cho d
=> 1 chia hết cho d => d=1
Vậy n+1/2n+3 là 2 phân số tối giản
e) Gọi d là UwCLN của 2n+3 và 4n+8, ta có:
(4n+8)-(2n+3) chia hết cho d
4n+8-2(2n+3) chia hết cho d
4n+8-4n-6 chia hết cho d
4n-4n+8-6 chia hết cho d
2 chia hết cho d => d=2
nhưng vì 2n+3 lẻ nên d là số lẻ => d=1
vậy 2n+3/4n+8 là 2 phân số tối giản
f) gọi d là ưcln của 3n+2 và 5n+3, ta có
(3n+2)-(5n+3) chia hết cho d
5(3n+2)-3(5n+3) chia hết cho d
15n+10-15n-9 chia hết cho d
15n-15n+10-9 chia hết cho d
1 chia hết cho d => d=1
vậy 3n+2/5n+3 là 2 phân số tối giản
3/4+3/28+....+3/n.(n+3)=3/1.4+3/4.7+....+3/n.(n+3)=1/1-1/4+1/4-1/7+...+1/n-1/n+3=1-1/n+3.
Suy ra E<1
\(E=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(\Rightarrow E=1+\left(-\frac{1}{4}+\frac{1}{4}\right)+\left(-\frac{1}{7}+\frac{1}{7}\right)+\left(-\frac{1}{10}+\frac{1}{10}\right)+...\left(-\frac{1}{n}+\frac{1}{n}\right)-\frac{1}{n+3}\)
\(E=1-\frac{1}{n+3}