Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đường tròn nội tiếp tam giác ABC
Nối OA, OB, OC
Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBCv
Ta có : S A B C = S O A B + S O A C + S O B C
= (1/2).AB.r + (1/2).AC.r + (1/2).BC.r
= (1/2)(AB + AC + BC).r
Mà AB + AC + BC = 2p
Nên S A B C = (1/2).2p.r = p.r
Gọi I,E,F lần lược là tiếp điểm của đường tròn tâm O nội tiếp với AB,BC,CA ta có OI = OE = OF = r
S ABC = S AOB + S BOC + S COA = AB.OI/2 + BC.OE/2 + CA.OF/2
= (AB + BC + CA).r/2 = pr
Gọi O là tâm đường tròn nội tiếp tam giác ABC
Nối OA, OB, OC
Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBCv
Ta có : SABC = SOAB + SOAC + SOBC
\(=\left(\frac{1}{2}\right)AB.r+\left(\frac{1}{2}\right).AC.r+\left(\frac{1}{2}\right).BC.r\)
\(=\left(\frac{1}{2}\right)\left(AB+AC+BC\right).r\)
Mà AB + AC + BC = 2p
Nên \(S_{ABC}=\left(\frac{1}{2}\right).2p.r=p.r\)
Gọi O là tâm đường tròn nội tiếp tam giác ABC .Nối OA, OB, OC
Nối OA, OB, OC.Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBC.
Ta có:
Mà AB + AC + BC = 2p
Nên
gọi I là tâm của đường nội tiếp tam giác ABC : ta có
SABC = SAIB + SBIC + SCIA
= \(\dfrac{AB.r}{2}+\dfrac{BC.r}{2}+\dfrac{CA.r}{2}\) = \(\left(\dfrac{AB}{2}+\dfrac{BC}{2}+\dfrac{CA}{2}\right).r\)
= \(\dfrac{chuvitamgiácABC}{2}.r\) = p.r (đpcm)
Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.
Ta có: BC = 2R
Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F
Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.
Suy ra: AD = AE = EO = OD = r
Theo tính chất hai tiếp tuyến cắt nhau ta có:
AD = AE
BD = BF
CE = CF
Ta có: 2R + 2r = BF + FC + AD + AE
= (BD + AD) + (AE + CE)
= AB + AC
Vậy AB = AC = 2(R + r)