Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\dfrac{1}{5}+\dfrac{1}{15}+\dfrac{1}{25}+\dfrac{1}{35}+...+\dfrac{1}{1985}\)
\(A=\dfrac{1}{5}+\dfrac{1}{3.5}+\dfrac{1}{5.5}+\dfrac{1}{7.5}+...+\dfrac{1}{397.5}\)
\(\Rightarrow5A=1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{397}\)
\(5A-1=\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{397}\)
\(5A-1=\dfrac{1}{3}+\left(\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}\right)+\left(\dfrac{1}{11}+\dfrac{1}{13}+...+\dfrac{1}{27}\right)+\)
\(\left(\dfrac{1}{29}+\dfrac{1}{31}+...+\dfrac{1}{81}\right)+\left(\dfrac{1}{83}+\dfrac{1}{85}+...+\dfrac{1}{243}\right)+...+\dfrac{1}{397}\)
\(\Rightarrow5A-1>\dfrac{1}{3}+\dfrac{1}{9}.3+\dfrac{1}{27}.9+\dfrac{1}{81}.27+\dfrac{1}{243}.81=\dfrac{1}{3}.5=\dfrac{5}{3}\)
\(\Rightarrow5A-1>\dfrac{5}{4}\Rightarrow5A>\dfrac{9}{4}\)
\(\Rightarrow A>\dfrac{9}{4}:5=\dfrac{9}{20}\Rightarrow\left(dpcm\right)\)
a)\(\left|-0.75\right|+\dfrac{1}{4}-2\dfrac{1}{2}\)
=0.75+0.25-2.5
=1-2.5=-1.5
b)\(15.\dfrac{1}{5}:\left(\dfrac{-5}{7}\right)-2\dfrac{1}{5}.\left(\dfrac{-7}{5}\right)\)
=3.(-1.4)+3.08
=-4.2+3.08=-1.12
c)\(\dfrac{5}{17}+\dfrac{2}{3}-\dfrac{20}{12}+\dfrac{7}{9}+\dfrac{12}{17}\)
=\(\dfrac{49}{51}-\dfrac{5}{3}+\dfrac{7}{9}+\dfrac{12}{17}\)
=\(\dfrac{-12}{17}+\dfrac{7}{9}+\dfrac{12}{17}\)
=\(\dfrac{11}{153}+\dfrac{12}{17}\)
=\(\dfrac{7}{9}\)
d)\(\dfrac{5}{15}+\dfrac{14}{25}-\dfrac{12}{9}+\dfrac{2}{7}+\dfrac{11}{25}\)
=\(\dfrac{67}{75}-\dfrac{4}{3}+\dfrac{2}{7}+\dfrac{11}{25}\)
=-0.44+\(\dfrac{127}{175}\)
=\(\dfrac{2}{7}\)
\(A=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{64}\)
\(=\dfrac{5+9+1}{15}-\dfrac{27+8+1}{36}+\dfrac{1}{64}\)
=1/64
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2\cdot2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3\cdot3}< \dfrac{1}{2\cdot3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4\cdot4}< \dfrac{1}{3\cdot4}\)
...
\(\dfrac{1}{9^2}=\dfrac{1}{9\cdot9}< \dfrac{1}{8\cdot9}\)
\(\dfrac{1}{10^2}=\dfrac{1}{10\cdot10}< \dfrac{1}{9\cdot10}\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A< 1-\dfrac{1}{10}\)
\(\Rightarrow A< \dfrac{9}{10}\)
\(\Rightarrow A< 1\) (vì: \(\dfrac{9}{10}< 1\))
Chứng minh 1 bất đẳng thức cơ bản sau:\(\dfrac{1}{n^2+\left(n+1\right)^2}< \dfrac{1}{2n\left(n+1\right)}\)
Thật vậy: \(\dfrac{1}{n^2+\left(n+1\right)^2}=\dfrac{1}{n^2+n^2+2n+1}=\dfrac{1}{2n^2+2n+1}< \dfrac{1}{2n^2+2n}=\dfrac{1}{2n\left(n+1\right)}\)
Thay vào bài toán \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+...+\dfrac{1}{n^2+\left(n+1\right)^2}=\dfrac{1}{1^2+\left(1+1\right)^2}+\dfrac{1}{2^2+\left(2+1\right)^2}+\dfrac{1}{3^2+\left(3+1\right)^2}+...+\dfrac{1}{n^2+\left(n+1\right)^2}\)
\(< \dfrac{1}{2.1.2}+\dfrac{1}{2.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2n\left(n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}-\dfrac{1}{2\left(n+1\right)}< \dfrac{1}{2}\left(đpcm\right)\)
\(a.\dfrac{-4}{7}-\dfrac{5}{13}\times\dfrac{-39}{25}+\dfrac{-1}{42}:\dfrac{-5}{6}\)
\(=\dfrac{-4}{7}+\dfrac{3}{5}+\dfrac{1}{35}\) \(=\dfrac{1}{35}+\dfrac{1}{35}=\dfrac{2}{35}\)
\(b.\dfrac{2}{9}\times\left[\dfrac{4}{5}:\left(\dfrac{1}{5}-\dfrac{2}{15}\right)+1\dfrac{2}{3}\right]-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\left[\dfrac{4}{5}:\dfrac{1}{15}+\dfrac{5}{3}\right]-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\left(12+\dfrac{5}{3}\right)-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\dfrac{41}{3}-\dfrac{-5}{27}=\dfrac{82}{27}-\dfrac{-5}{27}=\dfrac{29}{9}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+..+\dfrac{1}{9900}\)
\(A=\left(\dfrac{1}{2}+\dfrac{1}{12}\right)+\left(\dfrac{1}{30}+...+\dfrac{1}{9900}\right)\)
\(A>\dfrac{1}{2}+\dfrac{1}{12}\Rightarrow A>\dfrac{7}{12}\left(1\right)\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{5}{6}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< \dfrac{5}{6}\left(2\right)\)
\(\Rightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\rightarrowđpcm\)
Ta có :
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+..........+\dfrac{1}{99.100}\)
\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+............+\dfrac{1}{99.100}>\dfrac{1}{2}+\dfrac{1}{12}=\dfrac{7}{12}\)
\(\Leftrightarrow A>\dfrac{1}{12}\)\(\left(1\right)\)
Lại có :
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...........+\dfrac{1}{99.100}\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-.........-\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Leftrightarrow A< \dfrac{5}{6}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\rightarrowđpcm\)