K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1 2022

Với \(n=6k+1\Rightarrow a_n=10^{6k+1}+3\)

Ta có: \(10^6\equiv1\left(mod13\right)\Rightarrow10^{6k}\equiv1\left(mod13\right)\Rightarrow10^{6k+1}\equiv10\left(mod13\right)\)

\(\Rightarrow10^{6k+1}+3⋮13\) với mọi \(k\in N\)

\(\Rightarrow\) Dãy đã cho có vô số hợp số

7 tháng 1 2022

n = 6k + 4   

Chúc bạn học tốt!!

30 tháng 7 2017

Bởi vì số tự nhiên khéo dài mãi mãi nên số nguyên tố cũng vậy

Nếu thấy đúng thì k cho mình nha

4 tháng 12 2015

Giả sử số các số nguyên tố dạng 4k + 3 là hữu hạn.

Gọi đó là p1, p2, ..., pk.

Xét A = 4*p1*p2*...*pk - 1  

A có dạng 4k + 3, vậy theo bổ đề A có ít nhất 1 ước nguyên tố dạng 4k + 3.

Dễ thấy là A không chia hết cho p1, p2, ..., pk, tức không chia hết cho bất cứ số nguyên tố nào có dạng 4k + 3, mâu thuẫn.

Vậy có vô hạn số nguyên tố dạng 4k + 3

**** nhe

12 tháng 2 2016

547

ủng hộ mk đi các bạn

12 tháng 2 2016

547 duyệt nha

28 tháng 7 2017

cũng nhưu nhân số âm và số dương can cũng chứng minh tương tự 

vì căn 2 là số vô tỉ 

vì cắn 3 là số vô tỉ 

và căn 5 cũng là số vô tỉ nên khi cộng lại với nhau nó sẽ ra số vô tỉ