Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Gọi ƯCLN(2n+5;3n+7) = d ( \(d\in N\)*)
Ta có : 2n + 5 \(⋮\)d => 6n + 15 \(⋮\)d (1)
3n + 7 \(⋮\)d => 6n + 14 \(⋮\)d (2)
Lấy (1) - (2) ta được : \(6n+15-6n-14⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy ta có đpcm
A) Gọi 2 số tự nhiên liên tiếp (khác 0) là n và n+1.
Gọi ƯCLN của 2 số trên là a, ta có: n chia hết cho a; n+1 chia hết cho a => n+1-n chia hết cho a hay 1 chia hết cho a => a=1 => n và n+1 nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
B) Gọi 2 số lẻ liên tiếp là n và n+2. Gọi a là ƯCLN của n và n+2, ta có:
n chia hết cho a; n+2 chia hết cho a => n+2-n chia hết cho a hay 2 chia hết cho a.
Do n; n+2 lẻ nên a lẻ => a=1 => n và n+2 nguyên tố cùng nhau.
Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.
a)Giải: Gọi hai số lẻ liên tiếp là 2n + 1 và 2n + 3 (n \(\in\) N).
Ta đặt ƯCLN (2n + 1, 2n + 3) = d.
Suy ra 2n + 1chia hết cho d; 2n + 3 chia hết cho d.
Vậy (2n + 3) – ( 2n + 1) chia hết cho d
Hay 2 chia hết cho d, suy ra d \(\in\) { 1 ; 2 }. Nhưng d \(\ne\) 2 vì d là ước của các số lẻ. Vậy d = 1, điều đó chứng tỏ 2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau.
a/GỌI ƯCLN CỦA A VÀ B LÀ D
ƯCLN (4n+3;5n+1)=D
suy ra {4n+3 chia hết cho D
{5n+1 chia hết cho D
suy ra{5(4n+3) chia hết cho D
{4(5n+1) chi hết cho D
suy ra 5(4n+3)-4(5n+1) chia hết cho D
suy ra (20n+3)-(20n+1) chia hết cho D
suy ra 3 - 1 chia hết cho D
suy ra 2 chia hết cho D
SUY RA D thuộc Ư(2)
suy ra D =2 (tm đề bài)
VẬY ƯCLN của (a;b) = 2
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
a, gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ
a ,Gọi 2 số lẻ là 2k+1 ; 2k+2
Gọi Ư CNN 2k+1 và 2k+3 là d
ta có :
2k+3-2k+1=2
d thuộc ƯC (2) ={1;2}
Mà d không thể bằng 2 vì 2k+1 và 2k+3 là số lẻ
Vậy d = 1
b,Gọi ƯCNN 2n+5và 3n+7 là d
ta có :
3 .( 2n + 5 )chia hết cho d. =6n+15 chia hết cho d
2.( 3n +7 )chia hết cho d.= 6n+14chia hết cho d
(6n + 15 ) - ( 6n + 14 ) = 6n +15 - 6n -14 =1
d thuộc ƯC (1 ) ={1}
Vậy 2n + 5 và 3n+ 7là 2 số nguyên tố cùng nhau
a, Gọi ƯCLN(7n+10; 5n+7) là d. Ta có:
7n+10 chia hét cho d => 35n+50 chia hết cho d
5n+7 chia hết cho d => 35n+49 chia hết cho d
=> 35n+50-(35n+49) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
=> d = 1
=> ƯCLN(7n+10; 5n+7) = 1
=> 7n+10 và 5n+7 nguyên tố cùng nhau (đpcm)
Các câu sau tương tự