Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 5:
Theo đề, ta có: f(-3)=0
=>9a+12+6=0
=>9a=-18
hay a=-2
Làm đại thôi, chán hình rồi )): nghề của con.
Câu 1 :
\(A\left(x\right)=3x^3+2x+3x^2-6\)
\(B\left(x\right)=2x^2-3x^3-7x+6\)
a, Sắp xếp : \(A\left(x\right)=3x^3+3x^2+2x-6\)
\(B\left(x\right)=-3x^3+2x^2-7x+6\)
b, Ta có : \(A\left(x\right)+B\left(x\right)=\left(3x^3+3x^2+2x-6\right)+\left(-3x^3+2x^2-7x+6\right)\)
\(=3x^3+3x^2+2x-6-3x^3+2x^2-7x+6\)
\(=5x^2-5x\)
\(A\left(x\right)-B\left(x\right)=\left(3x^3+3x^2+2x-6\right)-\left(-3x^3+2x^2-7x+6\right)\)
\(=3x^3+3x^2+2x-6+3x^3-2x^2+7x-6\)
\(=6x^3+x^2+9x-12\)
c, Đặt \(5x^2-5x=0\)
\(\Leftrightarrow x\left(5x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy rút ra đc ...tự lm bn nhé!...
Câu 2 :
a, \(4x+9=0\Leftrightarrow x=-\frac{9}{4}\)
Vậy nghiệm đa thức trên la -9/4
b, \(3x^2+4x=0\Leftrightarrow x\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{4}{3}\end{cases}}\)
Vậy nghiệm đa thức là 0;-4/3
a: Đặt f(x)=0
=>3/4x=1/8
=>x=1/8:3/4=1/8x4/3=4/24=1/6
b: Đặt H(x)=0
=>-5x+30=0
=>x=6
c: Đặt G(x)=0
=>(x-3)(x-4)=0
=>x=3 hoặc x=4
d: Đặt K(x)=0
=>(x-9)(x+9)=0
=>x=9 hoặc x=-9
e: Đặt M(x)=0
=>(x+8)(x-1)=0
=>x=-8 hoặc x=1
\(4)D=x^2+x+1\)
\(D=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(D=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)
\(D=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của x.
Các câu khác lm tương tự nhé.
Cho góp ý xíu: lần sau bn đưa từng câu một lên diễn đàn thì sẽ có câu trả lời nhanh hơn là đưa cùng một lúc như thế này đấy
hok tốt~
\(D=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( đpcm )
\(F=2x^2+4x+3=2\left(x^2+2x+1\right)+1=2\left(x+1\right)^2+1\)
\(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+1\ge1>0\forall x\)( đpcm )
\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{11}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)
\(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Rightarrow3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\)( đpcm )
\(H=4x^2+4x+2=4\left(x^2+x+\frac{1}{4}\right)+1=4\left(x+\frac{1}{2}\right)^2+1\)
\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}\right)^2+1\ge1>0\forall x\)( đpcm )
\(K=4x^2+3x+2=4\left(x^2+\frac{3}{4}x+\frac{9}{64}\right)+\frac{23}{16}=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\)
\(4\left(x+\frac{3}{8}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\ge\frac{23}{16}>0\forall x\)( đpcm )
\(L=2x^2+3x+4=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{23}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\)
\(2\left(x+\frac{3}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)( đpcm )
a) Ta có: \(x^2-x+2\)
\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\forall x\)
hay \(x^2-x+2>0\forall x\)
Vậy: Đa thức \(x^2-x+2\) vô nghiệm(đpcm)
b) Ta có: \(4x^2-12x+10\)
\(=\left(2x\right)^2-2\cdot2x\cdot3+3^2+1\)
\(=\left(2x-3\right)^2+1\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(2x-3\right)^2+1\ge1>0\forall x\)
hay \(4x^2-12x+10>0\forall x\)
Vậy: Đa thức \(4x^2-12x+10\) vô nghiệm(đpcm)