K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(x^2-x+2\)

\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\forall x\)

hay \(x^2-x+2>0\forall x\)

Vậy: Đa thức \(x^2-x+2\) vô nghiệm(đpcm)

b) Ta có: \(4x^2-12x+10\)

\(=\left(2x\right)^2-2\cdot2x\cdot3+3^2+1\)

\(=\left(2x-3\right)^2+1\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(2x-3\right)^2+1\ge1>0\forall x\)

hay \(4x^2-12x+10>0\forall x\)

Vậy: Đa thức \(4x^2-12x+10\) vô nghiệm(đpcm)

Câu 5:

Theo đề, ta có: f(-3)=0

=>9a+12+6=0

=>9a=-18

hay a=-2

Làm đại thôi, chán hình rồi )): nghề của con.

Câu 1 : 

\(A\left(x\right)=3x^3+2x+3x^2-6\)

\(B\left(x\right)=2x^2-3x^3-7x+6\)

a, Sắp xếp : \(A\left(x\right)=3x^3+3x^2+2x-6\)

\(B\left(x\right)=-3x^3+2x^2-7x+6\)

b, Ta có : \(A\left(x\right)+B\left(x\right)=\left(3x^3+3x^2+2x-6\right)+\left(-3x^3+2x^2-7x+6\right)\)

\(=3x^3+3x^2+2x-6-3x^3+2x^2-7x+6\)

\(=5x^2-5x\)

\(A\left(x\right)-B\left(x\right)=\left(3x^3+3x^2+2x-6\right)-\left(-3x^3+2x^2-7x+6\right)\)

\(=3x^3+3x^2+2x-6+3x^3-2x^2+7x-6\)

\(=6x^3+x^2+9x-12\)

c, Đặt \(5x^2-5x=0\)

\(\Leftrightarrow x\left(5x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy rút ra đc ...tự lm bn nhé!...

Câu 2 : 

a, \(4x+9=0\Leftrightarrow x=-\frac{9}{4}\)

Vậy nghiệm đa thức trên la -9/4

b, \(3x^2+4x=0\Leftrightarrow x\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{4}{3}\end{cases}}\)

Vậy nghiệm đa thức là 0;-4/3 

22 tháng 6 2020

ơ, bạn ko biết làm hình à

a: Đặt f(x)=0

=>3/4x=1/8

=>x=1/8:3/4=1/8x4/3=4/24=1/6

b: Đặt H(x)=0

=>-5x+30=0

=>x=6

c: Đặt G(x)=0

=>(x-3)(x-4)=0

=>x=3 hoặc x=4

d: Đặt K(x)=0

=>(x-9)(x+9)=0

=>x=9 hoặc x=-9

e: Đặt M(x)=0

=>(x+8)(x-1)=0

=>x=-8 hoặc x=1

12 tháng 7 2018

\(4)D=x^2+x+1\)

\(D=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(D=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(D=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của x.

Các câu khác lm tương tự nhé.

Cho góp ý xíu: lần sau bn đưa từng câu một lên diễn đàn thì sẽ có câu trả lời nhanh hơn là đưa cùng một lúc như thế này đấy

hok tốt~

3 tháng 8 2020

\(D=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( đpcm )

\(F=2x^2+4x+3=2\left(x^2+2x+1\right)+1=2\left(x+1\right)^2+1\)

\(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+1\ge1>0\forall x\)( đpcm )

\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{11}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)

\(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Rightarrow3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\)( đpcm )

\(H=4x^2+4x+2=4\left(x^2+x+\frac{1}{4}\right)+1=4\left(x+\frac{1}{2}\right)^2+1\)

\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}\right)^2+1\ge1>0\forall x\)( đpcm )

\(K=4x^2+3x+2=4\left(x^2+\frac{3}{4}x+\frac{9}{64}\right)+\frac{23}{16}=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\)

\(4\left(x+\frac{3}{8}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\ge\frac{23}{16}>0\forall x\)( đpcm )

\(L=2x^2+3x+4=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{23}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\)

\(2\left(x+\frac{3}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)( đpcm )