Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(xy-12x+15y\)là (*)
Từ phương trình (1) ta có \(x^2-3xy+2y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y-1\end{cases}}\)
Với \(x=y\)thay vào (2) ta có \(x^2-2x^2+x^2-5x+7x=0\Leftrightarrow x=0\Rightarrow x=y=0\)
Thay \(x=y=0\)vào (*) ta thấy 0.0-12.0+15.0=0(tm)
Với \(x=2y-1\Rightarrow\left(2y-1\right)^2-2\left(2y-1\right)y+y^2-5\left(2y-1\right)+7y=0\)
\(\Leftrightarrow4y^2-4y+1-4y^2+2y+y^2-10y+5+7y=0\)
\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left(y-2\right)\left(y-3\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)
Với \(x=3;y=2\)thay vào (*) ta thấy \(3.2-12.3+15.0=0\left(tm\right)\)
Với \(x=5;y=3\)thay vào (*) ta thấy \(5.3-12.5+15.3=0\left(tm\right)\)
Vậy .....
a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)
b/ \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)
a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3}{4}y^2+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge1>0\)
với mọi x,y
b/ \(x^2+5y^2+2x-4xy-16y+14=x^2-2x\left(2y-1\right)+\left(4y^2-4y+1\right)+\left(y^2-12y+36\right)-23\)
\(=\left(x-2y+1\right)^2+\left(y-6\right)^2-23\ge-23\)
Bạn xem lại đề
2 câu trên đã có kết quả, mình giải quyết câu c nhá
5x2 + 10y2 - 6xy - 4x - 2y + 3 > 0
5x2 + 10y2 - 6xy - 4x - 2y + 3 = x2 + 4x2 + y2 + 9y2 - 6xy - 4x - 2y + 3
=[(2x)2 - 2*2x + 1] + (y2 - 2y + 1) + [(3y)2 - 2*3y + x2 ] + 1
=(2x + 1)2 + (y - 1)2 + (3y - x)2 + 1
(2x + 1)2 \(\ge\)0 với mọi x
(y - 1)2 \(\ge\) 0 với mọi y
(3y - x)2\(\ge\) 0 với mọi x và y
1>0
=> ĐPCM
a) \(\left(5x-2\right)^2-\left(7-6x\right)^2=0\)
\(\Leftrightarrow\left(5x-2-7+6x\right)\left(5x-2+7-6x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}11x-9=0\\-x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{11}\\x=5\end{cases}}}\)
b) \(\left(3x-1\right)^2+\left(5x+2\right)^2=x+5\)
\(\Leftrightarrow9x^2+6x+1+25x^2+20x+4=x+5\)
\(\Leftrightarrow34x^2+26x+5=x+5\)
\(\Leftrightarrow34x^2+25x=0\)
\(\Leftrightarrow x\left(34x+25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\34x+25=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-25}{34}\end{cases}}}\)
c) Tự làm nốt
a) ( 5x - 2 )2 - ( 7 - 6x )2 = 0
<=> [ 5x - 2 - ( 7 - 6x ) ][ 5x - 2 + ( 7 - 6x ) ] = 0
<=> [ 5x - 2 - 7 + 6x ][ 5x - 2 + 7 - 6x ] = 0
<=> [ 11x - 9 ][ 5 - x ] = 0
<=> \(\orbr{\begin{cases}11x-9=0\\5-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{9}{11}\\x=5\end{cases}}\)
b) ( 3x - 1 )2 + ( 5x + 2 )2 = x + 5
<=> 9x2 - 6x + 1 + 25x2 + 20x + 4 = x + 5
<=> 34x2 + 14x + 5 = x + 5
<=> 34x2 + 14x + 5 - x - 5 = 0
<=> 34x2 + 13x = 0
<=> 13x( 34/13x + 1 ) = 0
<=> \(\orbr{\begin{cases}13x=0\\\frac{34}{13}x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{13}{34}\end{cases}}\)
c) ( x - 2 )2 - ( 3 + 2x )2 = 20x - 4
<=> x2 - 4x + 4 - ( 4x2 + 12x + 9 ) = 20x - 4
<=> x2 - 4x + 4 - 4x2 - 12x - 9 - 20x + 4 = 0
<=> -3x2 - 36x - 1 = 0
=> Vô nghiệm ( bấm EQN ra nghiệm vô tỉ )
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
_______________Bài làm___________________
a, \(x^2+xy+y^2+1\)
\(=\left(x^2+2x\dfrac{y}{2}+\dfrac{y^2}{4}\right)+\dfrac{3y^2}{4}+1=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^3}{4}+1\)
Do \(\left(x+\dfrac{y}{2}\right)^2\ge0\forall x,y\)
Và \(\dfrac{3y^2}{4}\ge0\forall y\)
Nên: \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\forall x,y=>đpcm\)
b, \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+\left(y^2-6y+9\right)+5\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+\left(y-3\right)^2+5\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)
Do \(\left(x-2y+1\right)^2\ge0\forall x,y\)
Và \(\left(y-3\right)^2\ge0\forall y\)
Nên \(\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)
c, \(5x^2+10y^2-6xy-4x-2y+3\)
\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-2x+1\right)+\left(y^2-2y+1\right)+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)
Do .........
tự làm ik
\(x^2+xy+y^2+1>0\)
\(\Leftrightarrow x^2+2.x.\frac{1}{2}y+\frac{1}{4}y^2+\frac{3}{4}y^2+1>0\)
\(\Leftrightarrow\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>1\)
=>ĐPCM
\(x^4+x^2+2>0\)
\(\Leftrightarrow\left(x^2\right)^2+2x^2.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}>\frac{7}{4}\)
=>ĐPCM
\(\left(x+3\right)\left(x-11\right)+2003>0\)
\(\Leftrightarrow x^2-8x-33+2003>0\)
\(\Leftrightarrow x^2-8x+16+1954>0\)
\(\Leftrightarrow\left(x-4\right)^2+1954>1954\)
=>ĐPCM
\(-9x^2+12x-15< 0\)
\(\Leftrightarrow-\left(3x^2+2.3.2x+4+11\right)< 0\)
\(\Leftrightarrow-\left[\left(3x+2\right)^2+11\right]< 11\)
=>ĐPCM
\(-5-\left(x-1\right)\left(x+2\right)< 0\)
\(\Leftrightarrow-5-\left(x^2-x-2\right)< 0\)
\(\Leftrightarrow-5-\left(x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{9}{4}\right)< 0\)
\(\Leftrightarrow-5-\left[\left(x-\frac{1}{2}\right)^2-\frac{9}{4}\right]< \frac{-11}{4}\)
=>ĐPCM