Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔCDB có CN/CD=CP/CB
nên NP//BD và NP=DB/2
Xét ΔEDB có EM/ED=EQ/EB
nên MQ//BD và MQ=BD/2
=>NP//MQ và NP=MQ
Xét ΔDEC có DN/DC=DM/DE
nên MN//EC
=>MN vuông góc với AB
=>MN vuông góc với NP
Xét tứ giác MNPQ có
NP//MQ
NP=MQ
MN vuông góc với NP
Do đó: MNPQ là hình chữ nhật
=>M,N,P,Q cùng thuộc 1 đường tròn
Tham khảo:
Xét tam giác DEC có
M là trung điểm DE
N là trung điểm DC
MN là đường trung bình của tam giác DEC, hay MN//EC (*) và MN=1/2 EC (1)
* Xét tam giác BEC có
Q là trung điểm BE
P là trung điểm BC
PQ là đường trung bình của tam giác BEC, hay PQ//EC và PQ=1/2 EC (2).
Từ (1) và (2) suy ra tứ giác MNPQ là hình bình hành.
* Xét tam giác DEB có
Q là trung điểm BE
M là trung điểm DE
QM là đường trung bình của tam giác BED, hay MQ//DB (3).
Mà AB⊥AC (4)
Từ (1), (3) và (4) suy ra MN⊥MQ (5)
Tứ giác MNPQ là hình bình hành mà có một góc vuông MNPQ là hình chữ nhật.
Gọi I là giao điểm của hai đường chéo MP và QN
Suy ra IM=IN=IP=IQ (tính chất hình chữ nhật)
Nên các điểm M, N, P, Q đều cách đều I một khoảng cố định
M, N, P, Q cùng thuộc một đường tròn.
Gọi I là giao điểm của hai đường chéo AC và BD. Ta có:
IA = IB = IC = ID (tính chất hình chữ nhật)
Vậy bốn điểm A, B, C, D cùng nằm trên một đường tròn bán kính AC/2
Áp dụng định lí Pitago vào tam giác vuông ABC ta có:
A C 2 = A B 2 + B C 2 = 16 2 + 12 2 = 256 + 144 = 400
Suy ra: AC = 400 = 20 (cm)
Vậy bán kính đường tròn là: IA = AC/2 = 20/2 = 10 (cm)
Gọi O là giao điểm của hai đường chéo AC và BD.
Ta có OA = OB = OC = OD (tính chất) nên bốn điểm A, B, C, D thuộc cùng một đường tròn (tâm O, bán kính OA)
Theo định lí Pitago trong tam giác vuông ABC có:
Nên bán kính đường tròn là OA = 13 : 2 = 6.5 cm
Gọi O là giao điểm của hai đường chéo AC và BD.
Ta có OA = OB = OC = OD (tính chất) nên bốn điểm A, B, C, D thuộc cùng một đường tròn (tâm O, bán kính OA)
Theo định lí Pitago trong tam giác vuông ABC có:
Nên bán kính đường tròn là OA = 13 : 2 = 6.5 cm
Xét ΔCDB có CN/CD=CP/CB
nên NP//BD và NP=DB/2
Xét ΔEDB có EM/ED=EQ/EB
nên MQ//BD và MQ=BD/2
=>NP//MQ và NP=MQ
Xét ΔDEC có DN/DC=DM/DE
nên MN//EC
=>MN vuông góc với AB
=>MN vuông góc với NP
Xét tứ giác MNPQ có
NP//MQ
NP=MQ
MN vuông góc với NP
Do đó: MNPQ là hình chữ nhật
=>M,N,P,Q cùng thuộc 1 đường tròn
* Xét tam giác DECDEC có
MM là trung điểm DEDE
NN là trung điểm DCDC
Suy ra, MNMN là đường trung bình của tam giác DECDEC, hay MN//ECMN//EC (*) và MN=12ECMN=12EC (1)
* Xét tam giác BECBEC có
QQ là trung điểm BEBE
PP là trung điểm BCBC
Suy ra, PQPQ là đường trung bình của tam giác BECBEC, hay PQ//ECPQ//EC và PQ=12ECPQ=12EC (2).
Từ (1) và (2) suy ra tứ giác MNPQMNPQ là hình bình hành.
* Xét tam giác DEBDEB có
QQ là trung điểm BEBE
MM là trung điểm DEDE
Suy ra, QMQM là đường trung bình của tam giác BEDBED, hay MQ//DBMQ//DB (3).
Mà AB⊥ACAB⊥AC (4)
Từ (*), (3) và (4) suy ra MN⊥MQMN⊥MQ (5)
Tứ giác MNPQMNPQ là hình bình hành mà có một góc vuông suy ra MNPQMNPQ là hình chữ nhật.
Gọi II là giao điểm của hai đường chéo MPMP và QN,QN, các điểm M,N,P,QM,N,P,Q đều cách đều II một khoảng cố định, suy ra M,N,P,QM,N,P,Q cùng thuộc một đường tròn
Xem thêm tại: https://loigiaihay.com/giai-bai-12-phan-bai-tap-bo-sung-trang-158-sbt-toan-9-tap-1-a72611.html#ixzz65S8F62Pu
Gọi AC cắt BD ở E
Tứ giác ABCD là hcn , AC cắt BD ở E => EA=EB=EC=EC = AC/2
=> A,B,C,D thuộc đường tròn tâm E bán kính = AC/2
Xét tam giác ABC vuông tại b => AC^2=AB^2+BC^2 = 12^2+5^2=169
=> AC = 13 cm
=> Bán kính của đường tròn đó là AC/2 = 13/2 = 6,5 cm
Gọi O là giao điểm hai đường chéo của hình chữ nhật, ta có OA = OB = OC= OD.
Bốn điểm A, B, C, D, cách đều điểm O nên bốn điểm này cùng thuộc một đườngt ròn (tâm O, bán kính OA).
Xét tam giác ABC vuông tại B, có
AC2 = AB2 + BC2 = 122 + 52 = 169 ⇒ AC = \(\sqrt{169}\) = 13
Bán kính của đườngtròn là
OA = \(\frac{AC}{2}\) = \(\frac{13}{2}\) = 6,5 (cm)
Vậy bán kính đường tròn bằng 6,5 cm.
mày đao à