Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
a) Đề sai, phải là 384 mới đúng
Đặt \(A=n^4-10n^2+9\)
\(A=\left(n^4-n^2\right)-\left(9n^2-9\right)\)
\(A=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)
\(A=\left(n^2-1\right)\left(n^2-9\right)\)
\(A=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Vì n lẻ nên n = 2k + 1 ( k thuộc Z )
Khi đó A = 2k( 2k + 2)(2k - 2)( 2k + 4)
A = 16k( k + 1)( k - 1)( k + 2)
Ta thấy k - 1; k; k + 1; k + 2 là những số nguyên liên tiếp nên có hai số chẵn liên tiếp và một số chia hết cho 3
=> k( k + 1)( k - 1)( k + 2) chia hết cho 3 và 8
=> k( k + 1)( k - 1)( k + 2) chia hết cho 24 ( vì ƯCLN(3;8)=1)
=> A chia hết cho 16.24 = 384 ( Đpcm )
Đăng từng câu thôi, không giới hạn số lượng câu hỏi mà :)
b) Ta có: 18n + 9 ⋮ 9; 10n không chia hết cho 9
=> 10n + 18n + 9 không chia hết cho 27
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n⋮5\)
Vậy \(n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\left(đpcm\right)\)
Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=\left(2n^2-2n^2\right)-\left(3n+2n\right)\)
\(=-5n⋮5\forall n\inℕ\left(đpcm\right)\)
Rất vui vì giúp đc bạn <3
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Bài 1:
Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)
b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)
\(\Rightarrow ab\equiv2\left(mod3\right)\)
Vậy ab chia cho 3 dư 2
Cách 2: ( hướng dẫn)
a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )
Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh
Bài 2:
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)
Ta có: 10^n + 18n - 28 = (10^n - 1) + 18n-27 = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n)-27 (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3
=> A chia hết cho 3
=> 9.A chia hết cho 27
=>9.A-27 chia hết cho 27
=>10^n + 18n -28 chia hết cho 27
=>ĐPCM
C1: 10^n + 18n - 28 = (10^n - 9n -1) + (27n - 27)
Ta có: 27n - 27 chia hết cho 27 (1)
10n - 9n - 1 = [( 9...9 + 1) - 9n - 1] = 9...9 - 9n = 9 (1...1 - n) chia hết cho 27 (2)
Vì 9 chia hết cho 9 và 1...1 - n chia hết cho 3. Do 1...1 - n là một số có tổng các chữ số chia hết cho 3 và từ (1) và (2) => ( 10^n+18n-28 ) chia hết cho 27.
Vậy ( 10^n+18n-28 ) chia hết cho 27.(đpcm)
C2: *Với n=1, ta có: 10 + 18 - 28 = 0 chia hết cho 27.
Giả sử n=k, ta có: 10^k + 18k - 28 chia hết cho 27.
=> 10^k + 18k - 28 = 27m (m là số nguyên)
=> 10k = 27m -18k + 28 (1)
*Với n=k+1, ta có: 10^k+1 + 18(k+1) - 28 = 10.10^k + 18k - 10 (2)
Thay (1) vào (2), ta được:
10^k+1 + 18(k+1) - 28 = 10 (27m - 18k + 28) + 18k - 10 = 270m - 162k + 270 chia hết cho 27.
Vậy ( 10^n+18n-28 ) chia hết cho 27 với n thuộc N*.(đpcm
Có : 55n + 1 – 55n
= 55n.55 – 55n
= 55n(55 – 1)
= 55n.54
Vì 54 chia hết cho 54 nên 55n.54 luôn chia hết cho 54 với mọi số tự nhiên n.
Vậy 55n + 1 – 55n chia hết cho 54.
Chứng minh quy nạp theo n
\(10^n+18n-1⋮27\)
+) với n = 0 ta có: \(10^0+18.0-1=0⋮27\)
=> (1) đúng với n =0
+) g/s (1) đúng cho tới n ( với n là số tư nhiên )
+) ta chứng minh (1) đúng với n + 1
Ta có: \(10^{n+1}+18\left(n+1\right)-1=10.10^n+18n+17=10\left(10^n+18n-1\right)-10.18n+10+18n+17\)
\(=10\left(10^n+18n-1\right)-9.18n+27⋮27\)
=> ( 1) đúng với n + 1
Vậy (1) đúng với mọi số tự nhiên n