\(9\left(\frac{1}{10!}+\frac{1}{11!}+\frac{1}{12!}+...+\frac{1}{2020...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2020

nè mọi người cho mình biết bài này dải thế nào:            Tính diện tích tứ giác MBND. Biết hình chữ nhật ABCD có chiều dài DC=36cm chiều rộng d=20cm, AM=13  MB, BM=NC

Phần trả lời của người ta mà ghi câu hỏi vào là sao hả ? Bùi Duy Hưng

7 tháng 3 2018

Bạn tham khảo nhé 

\(a)\)Đặt  \(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}< 1\) ( đpcm ) 

Vậy \(A< 1\)

13 tháng 8 2015

a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}<1\)

\(\text{Vậy }\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<1\)

 

7 tháng 5 2016

Ta đặt biểu thức đã cho là A

suy ra A < (10-1)/10! + (11-1)/11! +...+ (1000-1)/1000!

=> A < 10/10! - 1/10! + 11/11! - 1/11! +...+ 1000/1000! - 1/1000!

=> A < 1/9! - 1/10! + 1/10! - 1/11! +...+ 1/999! - 1/1000!

=> A < 1/9! - 1/1000! < 1/9!

Vậy A < 1/9!

Chúc bạn hoc tốt

22 tháng 3 2018

A = 0 

B= 3/11

C= -1 

D= -9/10