Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(C=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\)
\(\Rightarrow C=1-\dfrac{1}{4}+1-\dfrac{1}{9}+...+1-\dfrac{1}{2500}\)
\(\Rightarrow C=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+...+1-\dfrac{1}{50^2}\)
\(\Rightarrow C=\left(1+...+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\) (có \(49\) chữ số \(1\))
\(\Rightarrow C=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)
Lại có:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
Mà \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}< 1\)
\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>-1\)
\(\Rightarrow49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)>49-1=48\)
Vậy \(C=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}>48\) (Đpcm)
Cảm ơn bn nhìu nhé!!mk còn 1 số câu chưa giải dc nếu bn làm dc thì giúp mk nhé!! mk cảm ơn trước ha!!
a)\(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2^2-1}+\dfrac{1}{4^2-1}+...+\dfrac{1}{100^2-1}\)
\(A< \dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\)
\(A< \dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(A< \dfrac{1}{2}\cdot\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}< \dfrac{50}{100}=\dfrac{1}{2}\)
Vậy \(A< \dfrac{1}{2}\)
b)B=\(\dfrac{3}{4}+\dfrac{8}{9}+...+\dfrac{2499}{2500}\)
49-B=\(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{2500}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)
\(49-B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(49-B< 1-\dfrac{1}{50}< 1\Leftrightarrow49< 1+B\Leftrightarrow B>48\)(ĐPCM)
b) Đặt :
\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+............+\dfrac{2499}{2500}\)
\(\Rightarrow A=\dfrac{4}{4}-\dfrac{1}{4}+\dfrac{9}{9}-\dfrac{1}{9}+.........+\dfrac{2500}{2500}-\dfrac{1}{2500}\)
\(A=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+...........+1-\dfrac{1}{50^2}\)
\(A=\left(1+1+....+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{50^2}\right)\)(\(49\) chữ số \(1\))
\(A=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+........+\dfrac{1}{50^2}\right)\)
Lại có :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{49.50}\)
Mà :
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}< 1\)
\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{50^2}\right)>-1\)
\(\Rightarrow49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+............+\dfrac{1}{50^2}\right)>49-1\)\(=48\)
\(\Rightarrow A>48\) \(\rightarrowđpcm\)
\(CóS=\dfrac{3}{2^2}+\dfrac{8}{3^2}+\dfrac{15}{4^2}+...+\dfrac{2499}{50^2}\)
\(Tathấy\)
\(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{50^2}< \dfrac{1}{49.50}\)=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}=1-\dfrac{1}{50}< 1\)\(-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>-1\)
\(S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>49-1\)\(S=\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>48\)
\(\rightarrow S>48\)
\(VậyS>48\)
\(A=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}\)
\(A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{29.31}{30.30}\)
\(A=\dfrac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4.....30.30}\)
\(A=\dfrac{1.2.3.....29}{2.3.4....30}.\dfrac{3.4.5.....31}{2.3.4.....30}\)
\(A=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)
\(B=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{2499}{2500}\)
\(B=\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.\dfrac{4.6}{5.5}.....\dfrac{49.51}{50.50}\)
\(B=\dfrac{2.4.3.5.4.6.....49.51}{3.3.4.4.5.5....50.50}\)
\(B=\dfrac{2.3.4......49}{3.4.5....50}.\dfrac{4.5.6.....51}{3.4.5....50}\)
\(B=\dfrac{2}{50}.\dfrac{51}{3}=\dfrac{17}{25}\)
Giải:
\(A=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}.\)
\(A=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{29.31}{30^2}.\)
\(A=\dfrac{1.2.3.....29}{2.3.4.....30}.\dfrac{2.3.4.....31}{2.3.4.....30}.\)
\(A=\dfrac{1}{30}.31=\dfrac{30}{31}.\)
Vậy \(A=\dfrac{30}{31}.\)
Tính \(A=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.............................\dfrac{2499}{2500}\)
A=2.4/3^2 . 3.5/4^2 . 4.6/5^2 ............ . 49.51/50^2
A=2/3-51/50
A=17/25.
Chúc bạn hok tốt.
Bài này cũng dễ ý mà, vô cùng đơn giản.........
Giải:
Ta có: \(A=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{2499}{2500}.\)
\(=\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{49.51}{50^2}.\)
\(=\dfrac{\left(2.3.4.....49\right)\left(4.5.6.....51\right)}{\left(3.4.5.....50\right)\left(3.4.5.....50\right)}.\)
\(=\dfrac{2.51}{3.50}.\)
\(=\dfrac{17}{25}.\)
CHÚC BN HỌC TỐT!!! ^ _ ^
Đừng quên bình luận nếu bài mik sai nhé!!! - _ -
Còn nếu bài mik đúng thì nhớ tick mik để mik lấy SP nha!!! ^ - ^
A= 3^2-1/3.3 . 4^2-1/4.4 . 5^2-1/5.5 . ... 50^2-1/50.50 A= (3+1).(3-1).(4+1).(4-1).(5+1).(5-1). ... (50+1).(50-1) / 3.3.4.4.5.5. ... . 50.50 A=4.2.5.3.6.4. ... 51.49 / 3.3.4.4.5.5....50.50 A=(4.5.6. ... .51).(2.3.4. ... 49)/(3.4.5.... .50).(3.4.5.. ... 50) A= 51.2/3.50 A=17/25
Ta có:
\(A=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}......\dfrac{2499}{2500}\)
= \(\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.\dfrac{4.6}{5.5}......\dfrac{49.51}{50.50}\)
= \(\dfrac{2.4.3.5.4.6......49.51}{3.3.4.4.5.5......50.50}\)
= \(\dfrac{\left(2.3.4....49\right)\left(4.5.6....51\right)}{\left(3.4.5....50\right)\left(3.4.5....50\right)}\)
= \(\dfrac{2}{50}.\dfrac{51}{3}\) = \(\dfrac{17}{25}\)
a) Ta có \(A=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)
\(=\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot\dfrac{4\cdot6}{5\cdot5}\cdot...\cdot\dfrac{49\cdot51}{50\cdot50}\)
\(=\dfrac{2\cdot4\cdot3\cdot5\cdot4\cdot6\cdot...\cdot49\cdot51}{3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot50\cdot50}\)
\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\cdot\dfrac{4\cdot5\cdot6\cdot...\cdot51}{3\cdot4\cdot5\cdot...\cdot50}\)
= \(\dfrac{2}{50}\cdot17=\dfrac{17}{25}\)
b) Vì n nguyên nên 3n - 1 nguyên
Để phân số \(\dfrac{12}{3n-1}\) có giá trị nguyên thì 12 ⋮ ( 3n - 1 ) hay ( 3n - 1 ) ϵ Ư( 12 )
Ư( 12 ) = { \(\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\) }
Lập bảng giá trị
3n - 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | \(\dfrac{2}{3}\) | 0 | 1 | \(\dfrac{-1}{3}\) | \(\dfrac{3}{4}\) | \(\dfrac{-2}{3}\) | \(\dfrac{5}{3}\) | -1 | \(\dfrac{7}{3}\) | \(\dfrac{-5}{3}\) | \(\dfrac{13}{3}\) | \(\dfrac{-11}{3}\) |
Vì n nguyên nên n ϵ { 0; 1; -1 }
Vậy n ϵ { 0; 1; -1 } để phân số \(\dfrac{12}{3n-1}\) có giá trị nguyên
\(\dfrac{n^2-1}{n^2}=1-\dfrac{1}{n^2}>1-\dfrac{1}{\left(n-1\right)n}\)
Từ đó ta có:
\(A=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+...+\dfrac{50^2-1}{50^2}>1-\dfrac{1}{1.2}+1-\dfrac{1}{2.3}+...+1-\dfrac{1}{49.50}\)
\(\Rightarrow A>49-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)\)
\(\Rightarrow A>49-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(\Rightarrow A>49-\left(1-\dfrac{1}{50}\right)=48+\dfrac{1}{50}>48\)
\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\\ A=\left(1+1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)\\ A=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)\)
Có \(\dfrac{1}{4}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\\ \dfrac{1}{9}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\\ \dfrac{1}{16}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\\ ...\\ \dfrac{1}{2500}=\dfrac{1}{50.50}< \dfrac{1}{49.50}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\\ \Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< 1-\dfrac{1}{50}< 1\\ \Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< 1\)
\(\Rightarrow A=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)>49-1\\ \Rightarrow A>48\)