K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

Xét tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Gọi giá trị chung của các tỉ số đó là k, ta có:

\(\frac{a}{b}\)=\(\frac{c}{d}\)=k                                                           (1)

Suy ra a=k.b, c=k.d

Ta có:

\(\frac{a+c}{b+d}\)=\(\frac{k.b+k.d}{b+d}\)=\(\frac{k.\left(b+d\right)}{b+d}\)=k       (2)

\(\frac{a-c}{b-d}\)=\(\frac{k.b-k.d}{b-d}\)=\(\frac{k.\left(b-d\right)}{b-d}\)=k       (3)

Từ (1),(2) và (3), suy ra

\(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{a+c}{b+d}\)=\(\frac{a-c}{b-d}\)(b#d và b#-d)

8 tháng 9 2016

vì b>0 ,d>0 ,a/b<c/d 

suy ra ad<bc

suy ra ad+ab<bc+ab

suy ra a(b+d) <b(a+c)suy ra a/b <a+c/b+d

lại có ad <bc suy ra ad+cd <bc+cd

suy ra d(a+c )<c(b+d)suy ra a+c/b+d <c/d

vậy a/b <a+c/b+d<c/d

14 tháng 10 2018

Ta co a/b=c/d

=> a/c=b/d

=> ab/cd=a2/c2=b2/d2=a2+b2/c2+d2 (dpcm)

3 tháng 10 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) (1)

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) (2)

Từ (1) và (2) => \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=> (a+b)(c-d) = (c+d)(a-b) \(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)

3 tháng 10 2017

Đặt a/b=c/d=k. Suy ra a=bk; c=dk

Ta có: a+b/a-b=bk+b/bk-b=b(k+1)/b(k-1)=k+1/k-1     (1)

=> c+d/c-d=dk+d/dk-d=d(k+1)/d(k-1)=k+1/k-1         (2)

Từ (1);(2) ta được a+b/a-b=c+d/c+d.       (đpcm)

Chúc bạn học tốt!

3 tháng 10 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

( Chia tử cho tử, mẫu cho mẫu )

Đó là điều phải chứng minh.

Nhớ k cho mình nhé! Thank you!!!

18 tháng 6 2017

Ta có: a/b<c/d=>ad<bc (1)

Thêm ab vào (1) ta có:

ad+ab<bc+ab hay a(b+d)<b(a+c)=>a/d<a+c<b+d (2)

Thêm cd vào 2 vế của (1) ta được:

ad+cb<bc+cd hay d(a+c)<c(b+d)=> c/d>a+c/b+d

Từ (2) và (3) suy ra:

a/b<a+c/b+d<c/d (đpcm)