Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{\left(ab+ac\right)+\left(ba+bc\right)-\left(ca+cb\right)}{2+3-4}=\frac{2ab}{1}\)
Tương tự \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{2bc}{5}\)
\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{2ac}{3}\)
Do đó \(\frac{2ab}{1}=\frac{2bc}{5}\Rightarrow\frac{a}{1}=\frac{c}{5}\Rightarrow\frac{a}{3}=\frac{c}{15}\)
\(\frac{2bc}{5}=\frac{2ac}{3}\Rightarrow\frac{b}{5}=\frac{a}{3}\)
Do vậy \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
Tương tự
Do đó
Do vậy
Chứng minh rằng nếu a,b,c là các số khác 0 thoả mãn : (ab+ac)/2=(ba+bc)/3=(ca+cb)/4 thì a/3=b/5=c/15
ta có (ab+ac)/2 = (ba+bc)/3 = (ca+cb)/4
=ab+ac-ba-bc+ca+cb/2-3+4 = 2ac/3
=ab+ac+ba+bc-ca-cb/2+3-4 = 2ab
=ab+ac-ba-bc-ca-cb/2-3-4 = 2bc/5
=> 2ac/3=2ab=2bc/5
Ta có 2ac/3=2ab/1 =>c/3 = b/1 => c/15 = b/5 (1)
2ac/3 = 2bc/5 => a/3 = b/5 (2)
từ (1) và(2) => a/3 = b/5 = c/15