K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

\(a^2+b^2\ge2ab\)

  • c1: xài AM-GM \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)

Dấu "=" khi a=b

  • C2: \(a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\). Dấu "=" khi a=b

22 tháng 3 2022

a,ta có a^2+2ab+b^2=[a+b]^2 lớn hơn hoặc bằng 0

b, a^2-2ab+b^2=[a-b]^2 lớn hơn hưacj bằng 0

30 tháng 3 2020

Ta có : \(\frac{a}{b}+\frac{b}{a}-2\)

\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)

\(=\frac{a^2+b^2-2ab}{ab}\)

\(=\frac{a^2-ab-ab+b^2}{ab}\)

\(=\frac{\left(a^2-ab\right)-\left(ab-b^2\right)}{ab}\)

\(=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}\ge0\) với mọi \(a;b\inℕ^∗\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\) với mọi \(a;b\inℕ^∗\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\) với mọi \(a;b\inℕ^∗\) 

Ta có\(\frac{a}{b}+\frac{b}{a}-2\)

\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)

\(=\frac{a^2+b^2-2ab}{ab}\)

\(=\frac{\left(a^2-ab\right)-\left(ab-b^2\right)}{ab}\)

\(=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}\ge0\text{ với mọi a;b \inℕ^∗}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\text{ với mọi a;b\inℕ^∗}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\text{ với mọi a;b \inℕ^∗}\)

Học tốt

Ta có:Xét hiệu \(\frac{a}{b}+\frac{b}{a}-2\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)(Vì\(a,b\inℕ^∗\))

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)(Đấu "=" xảy ra khi và chỉ khi a=b)(đpcm)

30 tháng 3 2020

giả sử a\(\ge\)b không làm mất đi tính chất tổng quát của bài.

\(\Rightarrow\)a = m  + b [ m \(\ge\)0]

ta có :

\(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}\)\(\frac{b}{b+m}=1+\frac{m+b}{b+m}\)\(=1+1=2\)

\(vậy\)\(\frac{a}{b}+\frac{b}{a}\ge2(ĐPCM)\)

8 tháng 8 2016

Ta có :

\(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2-2ab\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

Vậy ...