Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy 1/2 > 1/100
1/3 > 1/100
... 1/99 > 1/100
=>1/2 + 1/3 + 1/4 +...+1/100 > 99*(1/100)=99/100
Vậy 1/2 + 1/3 + 1/4 +...+1/100>99/100
Nguyễn Quang Huy viết chữ don't viết thành don mà ai cho li-ke thế
\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)
\(\Leftrightarrow A< B\)
a. tính A = 3+3^2+3^3+3^4+.....+3^100
3A=3^2+3^3+3^4+3^5+....+3^100
3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100
mà B=3^100-1 => A<B
ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết
ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết
Bạn cộng biểu thức trong ngoặc của vế trái với vế phải là ra 100
Ta có:
\(100-\left(1+\frac{1}{2}+\frac{1}{3}=...+\frac{1}{100}\right)\)
\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Chuyển vế đổi dấu:
\(100-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
=>\(100=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}+1+\frac{1}{2}+...+\frac{1}{100}\)
=>100=1+1+1+...+1
=>100=100
Vậy \(100-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
Đặt A là vế trái , B là vế phải
Ta có: \(B=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=A\)
Vậy A = B
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\RightarrowĐPCM\)