K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

\(a.a^3+b^3+c^3=3abc\)

\(a^3+b^3+c^3-3abc=0\)

\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Với : a + b + c = 0 thì dễ thấy đẳng thức trên đúng .

Từ đó suy ra : đpcm .

\(b.a+b+c+d=0\)

\(a+b=-\left(c+d\right)\)

\(\left(a+b\right)^3=-\left(c+d\right)^3\)

\(a^3+b^3+3a^2b+3ab^2=-\left(c^3+3c^2d+3cd^2+d^3\right)\)

\(a^3+b^3+c^3+d^3=-3c^2d-3cd^2-3a^2b-3ab^2\)

\(a^3+b^3+c^3+d^3=-3cd\left(c+d\right)-3ab\left(a+b\right)\)

\(a^3+b^3+c^3+d^3=-3cd\left(c+d\right)+3ab\left(c+d\right)\)

\(a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\) ( đpcm)

29 tháng 9 2019

a ) \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Nếu : \(a+b+c=0\) thì đẳng thức trên đúng .

\(\Rightarrowđpcm\)

b ) \(a+b+c+d=0\)

\(\Rightarrow a+b=-\left(c+d\right)\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(cb-cd\right)\left(đpcm\right)\)

Chúc bạn học tốt !!!

29 tháng 9 2019

a ) a^3+b^3+c^3=3abca3+b3+c3=3abc

\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0⇔(a+b)3+c3−3ab(a+b)−3abc=0

\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0⇔(a+b+c)(a2+b2+c2−ab−bc−ac)=0

Nếu : a+b+c=0a+b+c=0 thì đẳng thức trên đúng .(đpcm)

b ) a+b+c+d=0a+b+c+d=0

\Rightarrow a+b=-\left(c+d\right)\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3⇒a+b=−(c+d)⇔(a+b)3=−(c+d)3

\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)⇔a3+b3+c3+d3=−3ab(a+b)−3cd(c+d)

\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)⇔a3+b3+c3+d3=3ab(c+d)−3cd(c+d)

\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(cb-cd\right)\left(đpcm\right)⇔a3+b3+c3+d3=3(c+d)(cb−cd)(đpcm)

29 tháng 6 2018

\(a.a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Nếu : \(a+b+c=0\) thì đẳng thức trên đúng .

\(\Rightarrowđpcm\)

\(b.a+b+c+d=0\Rightarrow a+b=-\left(c+d\right)\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\left(đpcm\right)\)

5 tháng 7 2023

\(a+b+c+d=0\Rightarrow a+b=-\left(c+d\right)\)

\(\Rightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Rightarrow\left(a+b\right)^3+\left(c+d\right)^3=0\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)+c^3+d^3+3cd\left(c+d\right)=0\)

\(\Rightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Rightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\) (do \(a+b=-\left(c+d\right)\)

\(\Rightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\)

31 tháng 3 2020

Theo đề, a+b+c+d=0

\(\Rightarrow a+b=-\left(c+d\right)\)

Ta có: \(VT=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(c+d\right)\left(c^2-cd+d^2\right)\)

\(\Leftrightarrow VT=\left(c+d)\left(c^2-cd+d^2-a^2+ab-b^2\right)\right)\)

Để có ĐPCM ta xét hiệu: \(c^2-cd+d^2-a^2+ab-b^2-3\left(ab+cd\right)=c^2-4cd+d^2-a^2-2ab-b^2=c^2-4cd+d^2-\left(a+b\right)^2=c^2-4cd+d^2-\left(c+d\right)^2=-6cd\)

S nó ko = 0 ta:::xem lại đề..Hay mk lm sai j đó

16 tháng 7 2018

a +b+c+d=0

16 tháng 7 2018

0 nha bn

6 tháng 8 2016

a) a2 + b2 + c2 = ab + ac + bc

=> 2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc

=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0

=> (a - b)2 + (a - c)2 + (b - c)2 = 0 

Do 3 hạng tử trên đều có giá trị lớn hơn hoặc bằng 0 nên a - b = a - c = b - c = 0

=> a = b = c 

6 tháng 8 2016

b) a3 + b3 + c3 = 3abc

=> a3 + b3 + c3 - 3abc = 0

=> a3 + 3a2b + 3ab+ b3 + c3 - 3abc - 3a2b - 3ab2 = 0

=> (a + b)3 + c3 - 3ab(a + b + c) = 0

=> (a + b + c)(a2 + 2ab + b2 - bc - ac + c2) - 3ab(a + b + c) = 0

=> (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 0 

=> a + b + c = 0

hoặc a2 + b2 + c2 = ab + bc + ac =>  a = b = c