K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

xét F(-1)=a-b+c\(⋮\)3 (1); xétF(1)=a+b+c\(⋮\)3(2) từ (1) và (2) suy ra a-b+c+a+b+c\(⋮\)3 suy ra 2(a+c)\(⋮\)3 suy ra a+c\(⋮\)3 (3)

xétF(0)=c\(⋮\)3 suy ra a\(⋮\)3 (4) từ (3) và (4) suy ra F(x)=bx\(⋮3\forall\)x nên b\(⋮\)3

5 tháng 8 2015

Ta có f(0)=c chia hết cho 3.

f(1)=a+b+c chia hết cho 3 mà c chia hết cho 3 nên a+b chia hết cho 3.

f(-1)=a-b+c chia hết cho 3=> a-b chia hết cho 3.

Ta có (a+b)+(a-b)=2a chia hết cho 3. Mà 2,3 nguyên tố cùng nhau nên a chia hết cho 3.

a+b+c chia hết cho 3, a,c chia hết cho 3=> b chia hết cho 3

18 tháng 12 2017

a)Ta có: 
P = x^5 - x 
= x(x^4 - 1) 
= x(x^2 - 1)(x^2 + 1) 
= x(x-1)(x+1)(x^2 + 1) 

(x-1) và x và (x+1) là 3 số nguyên liên tiếp 
=> x(x-1)(x+1) chia hết cho 6 (cái này dễ hiểu vì trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 3, 1 số chia hết cho 2) 

Xét x = 5k => x chia hết cho 5 => P chia hết cho 6*5 = 30 => đpcm 
Xét x = 5k + 1 => (x-1) chia hết cho 5 => đpcm 
Xét x = 5k - 1 => (x+1) chia hết cho 5 => đpcm 
Xét x = 5k + 2 => (x^2 + 1) = (25k^2 + 20k + 5) chia hết cho 5 => đpcm 
Xét x = 5k - 2 => (x^2 + 1) = (25k^2 - 20k + 5) chia hết cho 5 => đpcm 

Tóm lại: với mọi x nguyên thì P đều chia hết cho 30

b)m4−10n2+9m4−10n2+9=(m-3)(m-1)(m+1)(m+3)
Ta có trong 4 số chẵn4 liên típ(m lẻ) lun có : 1 số chia hết cho 8,1 số chia hết cho 4, 2 số chia hết cho 2
\Rightarrow (m-3)(m-1)(m+1)(m+3) chia hết cho 128
.Nếu m= 3k \Rightarrow m-3 chia hết cho 3
.Nếu m= 3k+1 \Rightarrow m-1 chia hết cho 3
.Nếu m= 3k+2 \Rightarrow m+1 chia hết cho 3
Mà (3,128)=1 \Rightarrow ĐPCM

20 tháng 2 2020

P(x)=x^3-a^2.x+2016.b

Do 2016b chia hết cho 3 với mọi số nguyên b,ta chỉ cần xét x^3-a^2.x

có:x^3-a^2.x=x(x^2-a^2)=x(x+a)(x-a)

+nếu x chia hết cho 3=>P(x) chia hết cho 3

+nếu x và a chia 3 có cùng số dư=>(x-a)chia hết cho 3=>p(x) chia hết cho 3

+nếu x và a có số dư khác nhau khi chia hết cho 3(1 và 2)=>(x+a) chia hết cho 3=>P(x) chia hết cho 3

=>ĐPCM

21 tháng 2 2020

mik bt làm r

15 tháng 8 2017

Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)

+ Với x=0 ta có \(f\left(0\right)=d⋮5\left(1\right)\)

+ Với x=1 ta có \(f\left(1\right)=a+b+c+d⋮5\left(2\right)\)

+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)

+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)

+ Với x=-2 ta có\(f\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)

Từ (1),(2),(3),(4) và (5) suy ra:

\(\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)

\(\Rightarrow\left(a+b+c\right)\left(-a+b-c\right)⋮5\)

\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)

\(\Rightarrow2b⋮5\)

\(\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)

Từ (1),(2),(4) và (6) \(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)

\(\Rightarrow\left(8a+2c\right)-\left(8a+8c\right)⋮5\Rightarrow6c⋮5\)

\(\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)

\(\Rightarrow a⋮5\) (vì \(a+c⋮5\) )

Vậy \(a,b,c,d⋮5\)

3 tháng 8 2015

Ta có f(0)=c chia hết cho 3

f(1)=a+b+c chia hết cho 3, mà c chia hết cho 3=> a+b chia hết cho 3.

f(-1)=a-b+c chia hết cho 3, c chia hết cho 3 => a-b chia hết cho 3.

Vì a,b,c nguyên nên a+b+a-b=2a chia hết cho 3. Do 2 và 3 nguyên tố cùng nhau => a phải chia hết cho 3.

a,c chia hết cho 3, a+b+c chia hết cho 3=> b chia hết cho 3

2 tháng 4 2016

xét x=o nên f(x) = c nên c chia hết cho 3

xét x=1 suy ra f(x) = a+b+c vì c chia hết cho 3 nên a+b chi hết cho 3 (1)

xét x =-1 suy ra f(x)=a-b+c chia hết cho 3 tương tự suy ra a-b chia hết cho 3 (2)

từ 1 và 2 suy ra a+b+a-b chia hết cho 3 nên 2a chia hết cho 3 mà (2,3)=1 nên a chia hết cho 3 nên b chia hết 3