Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{m}{n}\) = (1+\(\frac{1}{1998}\)) + (\(\frac{1}{2}\)+ \(\frac{1}{1997}\))+...+ (\(\frac{1}{999}\)+\(\frac{1}{1000}\)) ( có 999 cặp)
\(\frac{m}{n}\)= \(\frac{1999}{1.1998}\)+ \(\frac{1999}{2.1997}\) +...+ \(\frac{1999}{999.1000}\)
Gọi mẫu số chung của 999 phân số trên là K
=> \(\frac{m}{n}\)= \(\frac{1999.999}{K}\) Mà 1999 là số nguyên tố nên khi rút gọn thì ở tử số vẫn còn 1999.
Vậy m=1999n. => m chia hết cho 1999.
Ta có : \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
...
\(\frac{1}{n^2}<\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}=1-\frac{1}{n}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<1\)
Ta thấy: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{49.50}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(1-\frac{1}{50}\)
Suy ra:
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1^2}+\left(1-\frac{1}{50}\right)\)
A<1+1-\(\frac{1}{50}\)
A<2-\(\frac{1}{50}\)<2
Vậy A<2(đpcm)
Bạn xem lời giải của mình nhé:
Giải:
A luôn > 0 (vì các số hạng trong tổng A đều lớn hơn 0)(1)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\\ 2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\\ 2A-A=1-\frac{1}{2^{100}}< 1\)
\(A< 1\)(2)
Từ (1) và (2) \(\Rightarrow0< A< 1\left(đpcm\right)\)
Chúc bạn học tốt!
1 /22 +1/ 32 +.......+ 1/ 1002 < 1/ 1. 2 + 1 / 2 .3 + 1 / 3. 4 + ...... + 1 / 99 .100
= 1- 1 / 2 + 1 / 2 - 1/ 3 + 1 / 3 - 1 / 4 +......+ 1 / 99 - 1 / 100
= 1 - 1 / 100< 1
=> 1 /22 +1/ 32 +.......+ 1/ 1002 < 1 ( đpcm)
Ta có : \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\)
Mà \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{8^2}<\frac{1}{7.8}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{8}<1\)
Vậy B < 1
Ta có :
\(\frac{1+2+3+...+a}{a}<\frac{1+2+3+...+b}{b}\)
\(\Leftrightarrow\frac{a\left(a+1\right)}{a}<\frac{b\left(b+1\right)}{b}\)
<=> a + 1 < b + 1
<=> a < b
có 1+2+3+...+a/a<1+2+3+...+b/b
=>(a+1)(a-1+1):2/a<(b+1)(b-1+1):2/b
<=>(a+1)a:2/a<(b+1)b;2/b
<=>a+1<b+1
<=>a<b
vậy a<b
Ta có : \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{100}<1\)
Mà \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<1\) nên A không phải số tự nhiên
nhin la biet ko phai so tu nhien