Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{m}{n}\) = (1+\(\frac{1}{1998}\)) + (\(\frac{1}{2}\)+ \(\frac{1}{1997}\))+...+ (\(\frac{1}{999}\)+\(\frac{1}{1000}\)) ( có 999 cặp)
\(\frac{m}{n}\)= \(\frac{1999}{1.1998}\)+ \(\frac{1999}{2.1997}\) +...+ \(\frac{1999}{999.1000}\)
Gọi mẫu số chung của 999 phân số trên là K
=> \(\frac{m}{n}\)= \(\frac{1999.999}{K}\) Mà 1999 là số nguyên tố nên khi rút gọn thì ở tử số vẫn còn 1999.
Vậy m=1999n. => m chia hết cho 1999.
Ta có: \(\frac{1}{1^2}=\frac{1}{1\cdot1};\frac{1}{2^2}<\frac{1}{1\cdot2};...;\frac{1}{50^2}<\frac{1}{49\cdot50}\)
=>\(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}<1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}=1+1-\frac{1}{50}=2-\frac{1}{50}=1,98\)
hay A<1,98 mà 1,98<2 nên A<2
Vậy A<2
1 /22 +1/ 32 +.......+ 1/ 1002 < 1/ 1. 2 + 1 / 2 .3 + 1 / 3. 4 + ...... + 1 / 99 .100
= 1- 1 / 2 + 1 / 2 - 1/ 3 + 1 / 3 - 1 / 4 +......+ 1 / 99 - 1 / 100
= 1 - 1 / 100< 1
=> 1 /22 +1/ 32 +.......+ 1/ 1002 < 1 ( đpcm)
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
\(\dfrac{1}{k^2}<\dfrac{1}{k(k-1)}=\dfrac{1}{k-1}-\dfrac{1}{k}\)
Ap dung:
\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\ldots+\dfrac{1}{n^2}<1+\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\ldots+\left(\dfrac{1}{n-1}-\dfrac{1}{n}\right)=2-\dfrac{1}{n}<2\)
Bài 3:
Do a và b đều không chia hết cho 3 nhưng khi chia cho 3 thì có cùng số dư nên\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\\\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\end{matrix}\right.\)
TH1:\(\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\)
\(\Rightarrow ab-1=\left(3n+1\right)\left(3m+1\right)-1\)
\(\Rightarrow ab-1=9nm+3m+3n+1-1=9nm+3m+3n⋮3\) nên là bội của 3 (đpcm)
TH2:\(\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\)
\(\Rightarrow ab-1=\left(3n+2\right)\left(3m+2\right)-1\)
\(\Rightarrow ab-1=9nm+6m+6n+4-1=9nm+6m+6n+3⋮3\) nên là bội của 3 (đpcm)
Vậy ....
Bài 2:
\(B=\frac{1}{2010.2009}-\frac{1}{2009.2008}-\frac{1}{2008.2007}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow B=\frac{1}{2010.2009}-\left(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
Đặt A=\(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(\Rightarrow A=\frac{2009-2008}{2009.2008}+\frac{2008-2007}{2008.2007}+...+\frac{3-2}{3.2}+\frac{2-1}{2.1}\)
\(\Rightarrow A=\frac{2-1}{2.1}+\frac{3-2}{3.2}+...+\frac{2008-2007}{2008.2007}+\frac{2009-2008}{2009.2008}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2008}-\frac{1}{2009}\)
\(\Rightarrow A=1-\frac{1}{2009}\)
\(\Rightarrow B=\frac{1}{2010.2009}-A=\frac{1}{2010.2009}-\left(1-\frac{1}{2009}\right)\)
\(\Rightarrow B=\frac{1}{2010.2009}+\frac{1}{2009}-1=\frac{2011}{2010.2009}-1\)
Ta có : \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
...
\(\frac{1}{n^2}<\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}=1-\frac{1}{n}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<1\)
Ta có : \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{100}<1\)
Mà \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<1\) nên A không phải số tự nhiên
nhin la biet ko phai so tu nhien