Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^1+2^2+2^3+...+2^{2010}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+...+2^{2010}\)
\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)
\(10^6\) tận cùng là 0 \(=>10^6+2\) tận cùng là 2 \(=>10^6+2\) chia hết cho 2
\(A=2+2^2+2^3+...+2^{10}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(=3\left(2+2^3+...+2^9\right)⋮3\)
\(A=2+2^2+2^3+...+2^{10}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)\)
\(=\left(2+2^6\right).31⋮31\)
\(3+3^2+3^3+...+3^{60}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\\ =\left(1+3\right)\left(3+3^3+...+3^{59}\right)\\ =4\left(3+3^3+...+3^{59}\right)⋮4\\ 3+3^2+3^3+...+3^{60}\\ =\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ =3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ =\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\\ =13\left(3+3^4+...+3^{58}\right)⋮13\)
sao ko dung f(x) ma viet
\(a=2+2^2+2^3+2^4+2^5+2^6+2^7+2^9+2^{10}\)
a=\(\left(2+2^2\right)+2^2.\left(2+2^2\right)+..+2^8\left(2+2^2\right)\)
a=\(\left(2+2^2\right).\left(1+2^2+..+2^8\right)\)
a=\(6.\left(1+2^2+2^4+2^6+2^8\right)\)
chia het cho 3