K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

\(.a.\) \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

Ta có : \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.\left(3^2+2\right)-2^n.\left(2^2+1\right)\)

\(=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\) \(\left(dpcm\right)\)

Vậy : \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

\(.b.\) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)

Ta có : \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\) \(=3^n.\left(3^3+3\right)+2^n.\left(2^3+2^2\right)\)

\(=3^n.30+2^n.12\)

\(=6\left(3^n.5+2^{n+1}\right)⋮6\) \(\left(dpcm\right)\)

Vậy : \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)

15 tháng 1 2017

a)\(VT=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=10\cdot\left(3^n-2^{n-1}\right)⋮10\)

b)\(VT=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=\left(3^{n+3}+3^{n+1}\right)+\left(2^{n+3}+2^{n+2}\right)\)

\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

\(=3^{n+1}\cdot10+2^{n+2}\cdot3\)

\(=3^n\cdot3\cdot2\cdot5+2^{n+1}\cdot2\cdot3\)

\(=3^n\cdot5\cdot6+2^{n+1}\cdot6\)

\(=6\cdot\left(3^n\cdot5+2^{n+1}\right)⋮6\)

6 tháng 7 2016

a) \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(\Rightarrow\left(3^n\cdot3^2+3^n\right)-\left(2^n\cdot2^2+2^n\right)\)

\(\Rightarrow3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(\Rightarrow3^n\cdot10-2^n\cdot5\)

\(\Rightarrow3^n\cdot10-2^{n-1}\cdot\left(2\cdot5\right)\)

\(\Rightarrow10\left(3^n-2^n\right)\) chia hết cho 10

6 tháng 7 2016

b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(\Rightarrow3^n\cdot3^3+3^n\cdot3+2^n\cdot2^3+2^n\cdot2^2\)

\(\Rightarrow3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)

\(\Rightarrow3^n\cdot30+2^n\cdot12\)

\(\Rightarrow3^n\cdot6\cdot5+2^n\cdot2\cdot6\)

\(\Rightarrow6\left(3^n\cdot5+2^n\cdot2\right)\) chia hết cho 6

5 tháng 7 2019

\(B=\left(3^{n+3}-2^{n+3}+3^{n+1}-2^{n+1}\right)\)

\(=3^{n+1}\left(3^2+1\right)-2^{n+1}\left(2^2+1\right)\)

\(=3^{n+1}.10-2^{n+1}.5\)

\(=3^{n+1}.10+2^n.2.5\)

\(=3^{n+1}.10+2^n.10\)

\(=10\left(3^{n+1}+2^n\right)\)\(⋮\)\(10\)\(\left(đpcm\right)\)

5 tháng 7 2019

\(Â=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+1}\) 

    \(=3^n\left(3^3+3\right)+2^{n+1}\left(2^2+1\right)\) 

    \(=3^n.30+2^{n+1}.\left(2^2+2\right).\frac{1}{2}\) 

     \(=3^n.30+2^{n+1}.6.\frac{1}{2}\) 

Mà \(3^n.30⋮6;2^{n+1}.6.\frac{1}{2}⋮6\) 

\(\Rightarrow3^n.30+2^{n+1}.6.\frac{1}{2}⋮6\) 

\(\Rightarrow A⋮6\left(đpcm\right)\)

21 tháng 7 2017

Tìm trước khi hỏi nhé bạn!

Câu hỏi của Vy Trương Thị Mai - Toán lớp 7 - Học toán với OnlineMath

1 tháng 9 2018

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\left(3^2+1\right)-2^{n+2}-2^n\)

\(=10.3^n-5.2^n\)

Do 2^n chia hết cho 2 suy ra 5.2^n chia hết cho 10 nên:

\(10.3^n-5.2^n⋮10\left(ĐCCM\right)\)

1 tháng 9 2018

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)

\(=30.3^n+12.2^n\)

\(=6\left(5.3^n+2^{n+1}\right)\)

Nhiều thế không ai làm đâu bạn          

9 tháng 6 2016

nhiều nhỉ lấy ở đâu đấy !!!!!!!!!!!!!!!!!!!!!!!!!

7 tháng 8 2015

http://olm.vn/hoi-dap/question/160314.html

4 tháng 1 2016

THONG CAM MINH MOI \(y=\frac{1}{x^2+\sqrt{x}}\)7 TUOI