Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biết a + b chia hết cho 8 chứng minh a - 7b chia hết cho 8.
Giải
ta có:(a+b)-(a-7b)
=a+b-a+7b
=(a-a)+(b+7b)
=0+b(1+7)
=8b chia hết cho 8
=>(a+b)-(a-7b) chia hết cho 8
mà a+b chia hết cho 8
<=>a-7b chia hết cho 8
vậy a-7b chia hết cho 8
a-7b=a+b-8b
ta có a+b chia hết cho 8
8b cũng chia hết cho 8
=>a-7b chia hết cho 8
\(\left(3a+7b\right)⋮17\Leftrightarrow6\left(3a+7b\right)=\left(18a+42b\right)⋮17\)(vì \(\left(6,17\right)=1\))
\(\Leftrightarrow\left[\left(18a+42b\right)-17a-34b\right]⋮17\)
\(\Leftrightarrow\left(a+8b\right)⋮17\)
Ta có đpcm.
2) Xét tổng (11a+2b)+(a+34b) =12a +36b
=> a+34b=(12a+36b)-(11a+2b)
Mà 12a+36b chia hết cho 12 ; 11a+2b chia hết cho 12
=>(12a+36b)-(11a+2b) chia hết cho 12
=>a+34b chia hết cho 12
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Trả lời:
1, \(27^{20}-3^{56}=\left(3^3\right)^{20}-3^{56}\)
\(=3^{60}-3^{56}\)
\(=3^{55}.\left(3^5-3\right)\)
\(=3^{55}.\left(243-3\right)\)
\(=3^{55}\times240\)\(⋮240\)
Vậy \(27^{20}-3^{56}\)chia hết cho 240
2, Ta có: \(3a+7b⋮19\)
\(\Leftrightarrow2.\left(3a+7b\right)⋮19\)
\(\Leftrightarrow6a+14b⋮19\)
\(\Leftrightarrow6a+33b-19b⋮19\)
\(\Leftrightarrow3.\left(2a+11b\right)-19b⋮19\)
Do \(19b\)chia hết cho 19. Theo t/c chia hết của 1 hiệu thì \(3.\left(2a+11b\right)⋮19\Leftrightarrow2a+11b⋮19\)
Vậy \(2a+11b\)chia hết cho 19