K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

Ta có: 21995=21990.25=21990.32

Mặt khác 32:31 dư 1=> 32.21990 chia 31 dư 1

=> 32.21990-1 chia hết cho 31

=> 21995-1 chia hết cho 31.

Vậy A chia hết cho 31

8 tháng 4 2016

??!!?

Đặt biểu thức trên là A.

Ta có: A=2^2008-8

            A=(2^4+2^5+....+2^2008)-(8+2^4+....+2^2007)

            A=2x(8+2^4+....+2^2007)-(8+2^4+....+2^2007)

       A=8+2^4+2^5+2^6+2^7+2^8+2^9+2^10+2^11+2^12+....+2^2003+2^2004+2^2005+2^2006+2^2007(có 2005 số hạng)

A=(8+2^4+2^5+2^6+2^7)+                                                                                                       (2^8+2^9+2^10+2^11+2^12)+....+(2^2003+2^2004+2^2005+2^2006+2^2007)(có 401 nhóm)

A=8x(1+2+4+8+16)+2^8x(1+2+4+8+16)+.....+2^2003x(1+2+4+8+16)

A=8x31+2^8x31+....+2^2003x31

A=31x(8+2^8+...+2^2003)

A là tích có thừa số 31 nên A chia hết cho 31(đpcm)

 

            

10 tháng 4 2016

vì 3n^2 chia hết cho 3 nên để A chia hết cho 3 thì ta CM 

n^3+2n=n*(n*n+2) vì n là số nguyên nên n có dạng 3k; 3k+1;3k+2(k thuộc Z)

nếu n=3k thì n*(n*n+2) luôn luôn chia hết cho 3

nếu n=3k+1 thì n*n=(3k+1)*(3k+1)=9k^2+3k+3k+1 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

nếu n=3k+2 thì n*n=(3k+2)*(3k+2)=9k^2+6k+6k+4 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

vậy biểu thức trên luôn luôn chia hết cho 3 với mọi n thuộcZ

10 tháng 4 2016

câu b)để A chia hết cho 15 thì n^3+3n^2+2n phải chia hết cho 3;5(vì ƯCLN(3;5)=1)

Mà theo câu a thì A luôn luôn chia hết cho 3 với n thuộc Z

nên ta chỉ cần tìm giá trị của n để A chia hết cho5

để A chia hết cho 5 thì n^3 phải chia hết cho 5;3n^2 phải chia hết cho 5;2n phải chia hết cho 5

                                   nên n phải chia hết cho 5(vì ƯCLN(3;5)=1;ƯCLN(2;5)=1 nên n^3;n^2;n phải chia hết cho 5 nên ta suy ra n phải chia hết cho 5)

mà 1<n<10 nên n=5(n là số nguyên dương)

vậy giá trị của n thỏa mãn đề bài là 5

 

\(10^n\)+18n -1=10..00(có n chữ số 0) -1+18n

                    =99...9(có n chữ số 9)-9n+27n

                    =9x(11...1(có n chữ số 1)-n)+27n

Ta thấy số 111...1 có n chữ số 1. Vậy tổng các chữ số của nó là n

Vậy 111...1(có n chữ số 1) và n chia 3 có cùng số dư

Vậy 111..1(có n chữ số 1)-n chia hết cho 3

Suy ra: 9x(11...1(có n chữ số 1)-n) chia hết cho 27, 27n chia hết cho 27

Suy ra A chia hết cho 27(đpcm)

                 

22 tháng 1 2019

A = 10n + 18n - 1
B1: Xét n = 1
=> A = 10 + 18 -1 = 27 ⋮ 27
Vậy với n = 1, mệnh đề đúng.
B2: Giả sử với n = k, mệnh đề đúng, tức là: 10k + 18k - 1 ⋮ 27
B3: Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng. Tức là: 10k+1 + 18(k+1) - 1 ⋮ 27.
Thật vậy, theo giả thiết quy nạp:
10k+1 + 18k + 18 - 1 = 10k.10 + 18k.10 - 10 + 27 - 9.18k = 10.(10k + 18k - 1) + (27 - 6.27k)
Có: 10.(10k + 18k - 1) ⋮ 27
(27 - 6.27k) ⋮ 27
=> 10k+1 + 18(k+1) - 1 ⋮ 27.
=> Điều phải chứng minh

20 tháng 3 2017

câu a

có 102008 + 125 = 1000...000125 (2005 số 0)

có 1 + 0 + 0 + 0 +...+ 1 + 2 + 5 = 9

=> 1000...000125 (2005 số 0) chia hết cho 9

mà 1000...000125 (2005 số 0) chia hết cho 5

5 và 9 nguyên tố cùng nhau

=> 1000...000125 (2005 số 0) chia hết cho 45

=> 102008 + 125 chia hết cho 45

câu b

52008 + 52007 + 52006 = 52006(52 + 5 + 1) = 52006 . 31

=> 52006 . 31 chia hết 31

=> 52008 + 52007 + 52006 chia hết 31

2 câu kia để mình xem lại 1 chút nhé, có j đó ko đựoc đúng, hoặc có thể là mình làm sai

chúc may mắn

AH
Akai Haruma
Giáo viên
3 tháng 2 2017

Lời giải:

Vì $f(x)$ chia hết cho $3$ với mọi \(x\in\mathbb{Z}\) nên ta có:

\(\left\{\begin{matrix} f(0)=c\vdots 3\\ f(1)=a+b+c\vdots 3 3\\ f(-1)=a-b+c\vdots 3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c\vdots 3\\ a+b\vdots 3(1)\\ a-b\vdots 3 (2) \end{matrix}\right.\)

Từ \((1),(2)\Rightarrow 2a\vdots 3\). Mà $2$ không chia hết cho $3$ nên $a$ chia hết cho $3$

Có $a+b$ chia hết cho $3$ và $a$ chia hết cho $3$ nên $b$ cũng chia hết cho $3$

Do đó ta có đpcm

19 tháng 3 2016

khó quá chịu thôi

16 tháng 4 2017

Ta có : \(f\left(x\right)⋮3\) với \(\forall x\in Z\)

\(\Rightarrow f\left(0\right)=a.0^2+b.0+c=0+0+c=c⋮3\)

\(Do\) \(f\left(x\right)⋮3\) với \(\forall x\in Z\)

\(\Rightarrow f\left(1\right)=a.1^2+b.1+c=a+b+c⋮3\left(1\right)\)

\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c⋮3\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(a+b+c\right)-\left(a-b+c\right)=a+b+c-a+b-c=2b⋮3\)

Do 2 ko chia hết cho 3 \(\Rightarrow\) Để \(2b⋮3\) thì \(b⋮3\)

Ta lại có : \(a+b+c⋮3\)

\(b⋮3\) ; \(c⋮3\)

\(\Rightarrow\) Để tổng trên chia hết cho 3 thì a \(⋮3\)

Vậy a,b,c \(⋮3\)

4 tháng 5 2017

đây là toán lớp mấy vậy

23 tháng 4 2016

Bạn xem lời giải của mình nhé:

Giải:

a) Có: 5 + 52 + 53 + 54 + 55 + 56 = 5(1 + 53) + 52(1 + 53) + 53(1 + 53
= 5. 126 + 52.126 + 53.126
=> 5 + 52 + 53 + 54 + 55 + 56 chia hết cho 126.

S = (5 + 52 + 53 + 54 + 55 + 56) + 56(5 + 52 + 53 + 54 + 55 + 56) + … + 51998(5 + 52 + 53 + 54 + 55 + 56).
Tổng trên có (2004: 6 =) 334 số hạng chia hết cho 126 nên nó chia hết cho 126.

b) Có: 5 + 52 + 53 + 54 = 5+ 53 + 5(5 + 53) = 130 + 5. 130.
=> 5 + 52 + 53 + 54 chia hết cho 130

S = 5 + 52 + 53 + 54 + 54(5 + 52 + 53 + 54 ) + … + 52000(5 + 52 + 53 + 54 )
Tổng trên có (2004: 4 =) 501 số hạng chia hết cho 130 nên nó chia hết cho 130.

Có S chia hết cho 130 nên chia hết cho 65.

Chúc bạn học tốt!hihi

23 tháng 4 2016

S=5+5^2+5^3+...+5^2004

S=(5+5^4)+(5^2+5^5)+...+(5^2001+5^2004)(có 1007 nhóm)

S=5*(1+5^3)+5^2*(1+5^3)+...+5^2001*(1+5^3)

S=5*126+5^2*126+...+5^2001*126

S=126*(5+5^2+...+5^2001) luôn luôn chia hết cho 126

S=(5+5^3)+(5^2+5^4)+...+(5^2002+5^2004)

S=130+5*(5+5^3)+...+5^2001*(5+5^3)

S=130+5*130+...+5^2001*130

S=130*(1+5+...+5^2001)

S=65*2*(1+5+...+5^2001) luôn luôn chia hết cho 65

27 tháng 12 2015

Bài nào không hiểu thì mình giải cho 

27 tháng 12 2015

dễ 

16 tháng 10 2017

undefined

25 tháng 10 2017

cái này bạn chụp màn hình trên olm à