Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 87 - 218 = (23)7 - 218 = 221 – 218 = 217.( 24 -2)= 217.(16 - 2) = 24.14 ⋮ 14
Ta có :
87 - 218 = ( 23 )7 - 218= 221 - 218 = 218 ( 23 - 1 ) = 218 . 7 = 217 .2.7 = 217 . 14 ( chia hết cho 14 )
Vậy 87-218chia hết cho 14
\(27^{10}+3^{29}+9^{14}=3^{30}+3^{29}+3^{28}=3^{28}\cdot\left(3^2+3+1\right)=3^{28}\cdot13\)chia hết cho 13
\(27^{10}+3^{29}+9^{14}\)
\(=\left(3^3\right)^{10}+3^{29}+\left(3^2\right)^{14}\)
\(=3^{30}+3^{29}+3^{28}\)
\(=3^{28}.\left(3^2+3+1\right)\)
\(=3^{28}.\left(9+3+1\right)\)
\(=3^{28}.13\)chia hết cho 13
=> đpcm
Ủng hộ mk nha ^_-
a) 87-218
=(23)7-218
=221-218
=218.(23-1)
=218. 7
=217.2.7
=217.14 chia het cho 14
81^7-27^9-9^13
=(3^4)^7-(3^3)^9-(3^2)^13
=3^28-3^27-3^26
=(3^26.3^2)-(3^26.3^1)-(3^26.1)
=3^26.(9-3-1)
=3^22.(3^4.5)
=3^22.405 chia het cho 405
=> 81^7-27^9-9^13 chia het cho 405
\(=3^{30}+3^{29}+3^{28}=3^{28}\left(3^2+3+1\right)=3^{28}\cdot13⋮13\)
Ta xét các trường hợp sau:
+ TH1: abab=1⇔⇔a=b Thì a+2b+2a+2b+2=abab=1
+ TH2: abab<1 ⇔⇔a<b⇔⇔a+2<b+2
a+2b+2a+2b+2 Có phần bù tới 1 là: b−ab+2b−ab+2
abab có phần bù tới 1 là b−abb−ab
Mà b−ab+2b−ab+2<b−abb−ab nên a+2b+2a+2b+2>abab
+TH3: abab>1 ⇔⇔a>b ⇔⇔a+2>b+2
a+2b+2a+2b+2 có phần thừa so với 1 là a−bb+2a−bb+2
abab có phần thừa so với 1 là a−bba−bb
Mà a−bb+2a−bb+2<a−bba−bb nên a+2b+2a+2b+2<abab
Sửa lần cuối bởi BQT: 21 Tháng tư 2014
Có:
+) \(81^4\equiv60\left(mod71\right)\)
\(\left(81^4\right)^2\equiv60^2\equiv50\left(mod71\right)\) (1)
+) \(27^5\equiv20\left(mod71\right)\)
\(\left(27^5\right)^2\equiv20^2\equiv45\left(mod71\right)\) (2)
+) \(9^7\equiv54\left(mod71\right)\)
\(\left(9^7\right)^2\equiv54^2\equiv5\left(mod71\right)\) (3)
Từ (1), (2), (3):
\(\Rightarrow81^8-27^{10}-9^{14}\equiv50-45-5\equiv0\left(mod71\right)\)
=> \(81^8-27^{10}-9^{14}⋮71\left(đpcm\right)\)