Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(7^{n+4}-7^n\)
\(=7^n\left(7^4-1\right)\)
\(=7^n.2400⋮100\)
b) \(20^5\equiv1\left(mod11\right)\)
\(\Rightarrow20^{15}\equiv1\left(mod11\right)\)
\(\Rightarrow20^5-1\equiv0\left(mod11\right)\)
\(\Rightarrow20^5-1⋮11\)
a) \(2010^{100}+2010^{99}\)
\(=2010^{99}\left(2010+1\right)\)
\(=2010^{99}.2011⋮2011\left(dpcm\right)\)
b) \(3^{1994}+3^{1993}-3^{1992}\)
\(=3^{1992}\left(3^2+3-1\right)\)
\(=3^{1992}.11⋮11\left(dpcm\right)\)
c) \(4^{13}+32^5-8^8\)
\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)
\(=2^{26}+2^{25}-2^{24}\)
\(=2^{24}\left(2^2+2-1\right)\)
\(=2^{24}.5⋮5\left(dpcm\right)\)
B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3
b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)
Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6
+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7
Vậy a^7-a chia hết cho 7
b, a^7-a=a(a^6-1)
=a(a^3+1)(a^3-1)
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1)
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1)
+7a (a-1) (a+1) (a^2+a-1)
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
+7a (a-1) (a+1) (a^2+a-1)
+7a (a-1) (a+1) (a^2-a-6)
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7)
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)]
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7.
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7
Do 7 chia 6 dư 1; mũ lên bao nhiêu vẫn chia 6 dư 1
=> 7100 chia 6 dư 1
Mà 1 chia 6 dư 1
=> 7100 - 1 chia hết cho 6 ( đpcm)
Do 7 chia 6 dư 1 ; mũ lên bao nhiêu vẫn chia 6 dư 1
=> 7100 chia 6 dư 1
Mà 1 chia 6 dư 1
=> 7100 - 1 chia hết cho 6
K mình nha bạn !!!