Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Nếu a\(⋮\)49 hoặc b\(⋮\)49 => dpcm (*)
* Ta xét Nếu a\(⋮̸\)49 hoặc b\(⋮̸\)49
+ Nếu \(3a+b⋮7\Rightarrow\left(3a+b\right)^2⋮49.\Leftrightarrow A=9a^2+6ab+b^2⋮49\)
B=\(5a^2+15ab-b^2\)
A + B =14a2 +21ab = 7a(2a+3b) = 7a(9a+3b-7a) =7.3(3a+b) - 49a2.\(⋮\)49 vì 3a+b \(⋮\)7.
A\(⋮\)49 và A+B\(⋮\)49 => B=\(5a^2+15ab-b^2\)\(⋮\)49 (1)
+Nếu B= \(5a^2+15ab-b^2\)\(⋮\)49 => 45a2 +15ab+(9a2-b2)-49a2\(⋮\)49
=> 15a(3a+b)+(3a+b)(3a-b)-49a2\(⋮\)49
=>(3a+b)18a-49a2 \(⋮\)49 => 3a+b\(⋮\)49 hay 3a+b \(⋮\)7 (2)
(*)(1)(2) => dpcm.
Ta có : 3a + 11b chia hết cho 17
13( 3a + 11b ) chia hết cho 17
Hay : 39a + 143b chia hết cho 17
Mà : 34a + 136b chia hết cho 17
Suy ra : (39a+143b)-(34a+136b)=5a+7b chia hết cho 17
Bạn tự chứng minh theo chiều ngược lại nhé !
moi a thuoc Z, ta cho A = {-1;0;1}
a) {(-1)-1}*{(-1)+2}+12 = 10 k la boi cua 9
( 0 - 1 ) * ( 0+2)+12=10 k la boi cua 9
(1-1) * ( 1 + 2 ) + 12 = 12 k la boi cua 9
b){ ( -1) + 2 } * { ( -1 + 9 } + 21 = 29 k la boi cua 49
(0+2)*(0+9)+21=39 k la boi cua 49
(1+2)*(1+9)+21=51 k la boi cua 49
nho chon cau tra loi cua mik nha
Bài a. Giả sử có số nguyên a đề (a-1)(a+2) +12 là bội của 9
Khi đó (a-1)(a+2) +12 = a2 + a + 10 = a2 + a + 1 + 9 chia hết cho 9
Hay a2 + a + 1 = 9k suy ra 4a2 + 4a + 4 = 36k
(2a+1)2 = 36k - 3 = 3 (12k - 1)
suy ra 12k - 1 chia hết cho 3 (vô lý)
Vậy.....không là bội của 9
2-
Ta có:
a+5b chia hết cho 7
=>10.(a+5b) chia hết cho 7
=>10a+50b chia hết cho 7
Nếu 10a+b chia hết cho 7 thì 10a+50b-(10a+b) bchia hết cho 7
=>49b chia hết cho 7 (đúng)
Vì vậy 10a+b chia hết cho 7
CM điều ngược lại đúng
Ta có:
10a+b chia hết cho 7
=>5.(10a+b) chia hết cho 7
=>50a+5b chia hết cho 7
Nếu a+5b chia hết cho 7 thì (50a+5b)-(a+5b) chia hết cho 7
=>49a chia hết cho 7 (đúng)
Vậy điều ngược lại đúng
Nếu \(5a^2+15ab-b^2⋮49\)
\(\Leftrightarrow5a^2+15ab-b^2⋮7.\left(1\right)\)
Mặt khác lại có
\(\left(5a^2+15ab-b^2\right)+\left(3a+b\right)^2=7a\left(2a+3b\right)⋮7.\left(2\right)\)
Từ (1) và (2) suy ra
\(\left(3a+b\right)^2⋮7\Rightarrow3a+b⋮7\)(vì 7 là số nguyên tố)
Nếu \(3a+b⋮7\),ta có
\(\left(3a+b\right)+2\left(2a+3b\right)=7\left(a+b\right)⋮7\)
\(\Rightarrow2\left(2a+3b\right)⋮7\Rightarrow2a+3b⋮7\)(vì(2,7)=1).
Suy ra \(\left(5a^2+15ab-b^2\right)+\left(3a+b\right)^2\)
=\(7a\left(2a+3b\right)⋮49.\left(3\right)\)
Vì \(3a+b⋮7\)nên \(\left(3a+b\right)^2⋮49.\left(4\right)\)
Từ (3)và(4) suy ra \(5a^2+15ab-b^2⋮49\)
Vậy \(5a^2+15ab-b^2⋮49\Leftrightarrow3a+b⋮7\)
hỏi bài và tự trả lời thì hỏi làm gì OvO