K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016

Ta biến đổi 1 tí nhé

\(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)

Tới đây dễ dàng áp dụng BĐT \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)

\(\Leftrightarrow\frac{3}{a+b}\le\frac{3}{4}.\frac{1}{a}+\frac{3}{4}.\frac{1}{b}\left(1\right)\)

\(\Leftrightarrow\frac{2}{b+c}\le\frac{1}{2}.\frac{1}{b}+\frac{1}{2}.\frac{1}{c}\left(2\right)\)

\(\Leftrightarrow\frac{1}{a+c}\le\frac{1}{4}.\frac{1}{a}+\frac{1}{4}.\frac{1}{c}\left(3\right)\)

Cộng vế với vế của (1), (2), (3) suy ra 

\(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{3}{4}\cdot\frac{1}{a}+\frac{3}{4}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{c}+\frac{1}{4}\cdot\frac{1}{a}+\frac{1}{4}\cdot\frac{1}{c}\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{a}+\frac{5}{4}\cdot\frac{1}{b}+\frac{3}{4}\cdot\frac{1}{b}\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)

\(\Leftrightarrow Dpcm\)

9 tháng 12 2018

a+b+c=0 <=> (a+b+c)2=0

<=>a2+b2+c2+2(ab+bc+ca)=0

<=>a2+b2+c2=-2(ab+bc+ca)

<=>(a2+b2+c2)2=[-2(ab+bc+ca)]2

<=>a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2b2+b2c2+c2a2)

<=>a4+b4+c4=2(a2b2+b2c2+c2a2) (1)

Lại có  (ab+bc+ca)2 = a2b2+b2c2+c2a2+2abc(a+b+c) = a2b2+b2c2+c2a2 (vì a+b+c=0) (2)

Từ (1) và (2) => đpcm

21 tháng 7 2016

Bạn thử thế số vào, bất kì số nào cũng được cà thì chắc chắn (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)

  Vd: (3+4+5)3=1728

        33+43+53+3(3+4)(4+5)(5+3)=1728

=> (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
 

21 tháng 7 2016

bạn ơi tôi đang chứng minh 2 vế bằng nhau chứ k có vd nha -_-

7 tháng 11 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^3+b^3\right)\left(a+b\right)\ge\left(a^2+b^2\right)^2\)

\(\left(a^2+b^2\right)^2\ge\dfrac{\left(a+b\right)^2}{4}=\dfrac{1}{4}\)

\(\Rightarrow VT=a^3+b^3\ge\dfrac{1}{4}=VP\)

Xảy ra khi \(a=b=\dfrac{1}{2}\)

26 tháng 10 2016

?? c/m  gì, câu hỏi có vấn đề

6 tháng 9 2019

Áp dụng BĐT cô-si ta có :
$a^{4}+a^{4}+a^{4}+1\geq 4a^{3}\Leftrightarrow 3a^{4}+1\geq 4a^{3}$
CMTT : $3b^{4}+1\geq 4b^{3}$
$3c^{4}+1\geq 4c^{3}$
$\Rightarrow 3a^{4}+3b^{4}+3c^{4}\geq 3a^{3}+3b^{3}+3c^{3} + (a^{3}+b^{3}+c^{3}-3) \geq 3(a^{3}+b^{3}+c^{3}$
(do $a^{3}+b^{3}+c^{3}\geq 3$ ) => ĐPCM ,dấu bằng xảy ra <=> a=b=c=1

Bài làm :

 Bình phương hai vế của a + b + c = 0 ta được :

\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)   ( 1 )

Bình phương hai vế của ( 1 ) ta được :

\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)  ( vì a + b + c = 0 nên 2abc . 0 = 0 )

=> đpcm 

Phần còn lại tương tự bạn tự làm nhé

Học tốt

22 tháng 9 2020

Ta có :

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)( 1 )

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)( 2 )

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)( 3 )

Ta lại có : 

\(\left(ab+bc+ca\right)^2\)

\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\)

\(=a^2b^2+b^2c^2+c^2a^2+2abc.0\)

\(=a^2b^2+b^2c^2+c^2a^2\)( 4 )

Thay ( 4 ) vào ( 2 ) ta được :

\(a^4+b^4+c^4+2\left(ab+bc+ca\right)^2=4\left(ab+bc+ca\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)( 5 )

Từ ( 1 ) => \(ab+bc+ca=\frac{-a^2-b^2-c^2}{2}\)

\(\Rightarrow2\left(ab+bc+ca\right)^2=\frac{\left(a^2+b^2+c^2\right)^2}{2}\)( 6 )

Từ ( 3 ) ; ( 5 ) và ( 6 ) => Đpcm

11 tháng 2 2016

Đây là điều đương nhiên ko cần phải chứng minh