Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là dạng toán nâng cao chuyên đề dấu hiệu chia hết cho 5; Cấu trúc thi chuyên thi học sinh giỏi, thi violympic. Hôm nay olm sẽ hướng dẫn các em giải dạng này như sau.
A = 3636 + 7755 - 2
A = \(\overline{..6}\) + (774)13.773 - 2
A = \(\overline{..6}\) + \(\overline{..1}\)13.3 - 2
A = \(\overline{..6}\) + \(\overline{..3}\) - 2
A = \(\overline{..9}\) - 2
A = \(\overline{..7}\) không chia hết cho 5
Ta có : abcabc = abc . 1001 = abc . 77.13
Vậy số có dạng abcabc luôn chia hết cho 77 (đpcm)
Ta có:
abcabc = abc*1001.
=abc*77*13.
Mà abc;13 đều EN.
=>Tích trên chia hết cho 77.
Vậy.....
+) 36 đồng dư với 1 (mod 7)
=> 3638 đồng dư với 138 = 1 (mod 7)
41 đồng dư với (-1) (mod 7)
=> 4143 đồng dư với (-1)43 = -1 (mod 7)
Do đó: 3638 + 4143 đồng dư với 1 + (-1) = 0 (mod 7)
Hay 3638 + 4143 chia hết cho 7
+) 36 đồng dư với 3 (mod 11)
=> 3638 đồng dư với 338 (mod 11)
41 đồng dư với (-3) (mod 11)
=> 4143 đồng dư với (-3)43 = -1 (mod 7)
Do đó: 3638 + 4143 đồng dư với 3 38+ (-3)43 (mod 11)
mà 3 38+ (-3)43 = 338 .(1- 35) = 338. (-242) chia hết cho 11
=> 3638 + 4143 chia hết cho 11
Vậy 3638 + 4143 chia hết cho 11 và 7 => chia hết cho 77