Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
212 = 1025 ; 73 = 343 \(\Rightarrow\) 210 < 3.73 \(\Rightarrow\)\(\left(2^{10}\right)^{238}< 3^{238}.\left(7^3\right)^{238}\)\(\Rightarrow\)22380 < 3238.7714 .
28 = 256 ; 34 = 243 => 35 < 2^8
Ta có : 3328 = 33.2225 = \(3^3.\left(3^5\right)^{47}< 3^3.\left(2^8\right)^{47}< 2^5.2^{376}\Rightarrow3^{328}< 2^{381}\)
22380 < 2238.7714 => 22380 < 2238.7714 => 21999 < 714 mà 21999 > 21993 => 21993 < 7714 .
S = 2 + 22 + 23 + ..... + 28 + 29
S = ( 2 + 22 + 23) + ........ + ( 27 + 28 + 29 )
S = 2 . ( 1 + 2 + 4 ) + ....... + 27 . ( 1 + 2 + 4 )
S = 2 . 7 + ........ + 27 . 7
Vì mỗi tích trên đều chia hết cho 7 \(\Rightarrow\)S chia hết cho 7
=(2+22+23) +(24 +25+26)+(27+28+29)
=2(1+2+22)+24(1+2+22)+27(1+2+22)
=(1+2+22)(2+24+27)
=7(2+24+27)
vậy S chia hết cho 7
22020-22017 = 23.22017 - 22017 = 22017.(23-1) = 22017.7 chia hết cho 7
Có : 2^2020 - 2^2017 = 2^2017.(2^3-1) = 2^2017.7 chia hết cho 7
k mk nha
Ta co: B= 1 + 3 +32 + 33 + ....... + 399
= (1 + 3) + 32(1+3) + 34(1 + 3) + ......... + 398(1+3)
= (1 + 3)(1 + 32 +34 + ......... + 398)
= 4(1 + 32 +34 + ........... + 398) \(⋮\)4
Vay B \(⋮\)4
k cho mk nha
B=(1+3)+(32+33)+...+(398+399)
=(1+3)+32(1+3)+...+398(1+3)
=4+32.4+.....+398.4
=4.(1+32+...+398)
vì 4 chia hết cho 4 => 4.(1+32+...+398) chia hết cho 4 => B chia hết cho 4 (điều phải chứng minh)