K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2015

http://olm.vn/hoi-dap/question/15355.html

TICK NHÉ

5 tháng 1 2016

Giả sử: (2n+5;3n+7)=d
2n+5=3(2n+5)=6n+15 chc d
3n+7=2(3n+7)=6n+14 chc d
                      1 chia hết cho d
=> d=1 vậy 2n+5 và 3n+7 nguyên tố cùng nhau

21 tháng 3 2020

Đặt UCLN(2n+5, 3n+7)=d

Ta có: 2n+5\(⋮d\)=>3(2n+5)=6n+15\(⋮d\)

3n+7\(⋮d\)=>2(3n+7)=6n+14\(⋮d\)

Vì 6n+15\(⋮d\),6n+14\(⋮d\)=>(6n+15)-(6n+14)=(6n-6n)+(15-14)=0+1=1\(⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\Rightarrow d=1\)

Vì d=1\(\Rightarrow\)UCLN(2n+5, 3n+7)=1\(\Rightarrow\)hai số 2n+5 và 3n+7 nguyên tố cùng nhau

23 tháng 10 2017

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

29 tháng 12 2015

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau

b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau

tick nha

8 tháng 11 2015

1)Gọi 2 số tự nhiên liên tiếp là n và n+1

Đặt ƯCLN(n,n+1)=d

Ta có: n chia hết cho d

n+1 chia hết cho d

=>n+1-n chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(n,n+1) =1

=>n và n+1 là 2 số nguyên tố cùng nhau

2)Gọi ƯCLN(2n+5,3n+7)=d

Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d

3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d

=>6n+15-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(2n+5,3n+7)=1

=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

8 tháng 11 2015

a) 

Gọi 2 số tự nhiên liên tiếp là n; n+1 

Gọi ƯCLN ( n;n+1) la d 

=> n chia hết cho d; n+1 chia hết cho d      

=> n+1-n chia hết cho d  

=> 1 chia hết cho d 

=> d =1

=>  ƯCLN ( n;n+1) =1

=>  hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau

b) 

Gọi ƯCLN( 2n+5;3n+7) la  d 

=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d 

=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d 

=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d 

=> 6n+15-(6n+14) chia hết cho d 

=> 1 chia hết cho d 

=> d= 1

=>  ƯCLN( 2n+5;3n+7)=1

=>2n+5 và 3n+7 là hai số nguyên tố cùng nhau