Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạ, ĐK: \(n,a\inℕ^∗\)bn nhé !
\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}\)
\(=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
Do đó : \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
a) Ta có : A = 1028 + 8
= 100...0 + 8 (28 chữ số 0)
= 100...008 (27 chữ số 0)
Nhận xét: 1028 + 8 có 3 chữ số tận cùng là 008
lại có : Tổng của 3 chữ số này là : 0 + 0 + 8 = 8 => chia hết cho 8
=> 1028 + 8 \(⋮\)8 (1)
Nhận xét : 1028 + 8 = 100...008 (27 chữ số 0)
=> Tổng các chữ số của số trên là : 1 + 0 + 0 + .... + 0 + 0 + 8 = 9 \(⋮\)9 (27 số hạng 0)
=> 1028 + 8 \(⋮\)9(2)
Từ (1) và (2) ta có :
ƯCLN(8,9) = 1
=> 1028 + 8 \(⋮\)BCNN(8,9)
=> 1028 + 8 \(⋮\)72
Ta có :
\(10^{28}+8=100...008\)(27 chữ số 0 )
Xét \(008⋮8\Rightarrow10^{28}+8⋮8\left(1\right)\)
Xét \(1+27\times0+8=9⋮9\Rightarrow10^{28}+8⋮9\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow10^{28}+8⋮72\)
xét n(n+1)(4n+1)
Có (nn+n1)(4n+1)
(2n+n)(4n+1)=3n(4n+1)
Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3
xét3n(4n+1)
có 3n*4n+3n
=>n(3+3)4n
=>n6*4n=24n chia hết cho 2
4( 1 . 2 .3 ) = 1.2.3.4-0.1.2.3
4(2.3.4) = 2.3.4.5 - 1.2.3.4
4(3.4.5)=3.4.5.6 - 2.3.4.5
4(n-1)n(n+1)=(n-1)n(n+1)(n+1)-(n-2)(n-1)n(n+1)
=> 4B = (n-1)n(n+1)(n+2) => B = (n-1)n(n+1)(n+2) : 4
k nha
\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)
\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)
\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)
\(VT:\frac{1}{n}.\frac{1}{n+4}\)
\(=\frac{1}{n\left(n+4\right)}\)
\(VP:\frac{1}{4}\left(\frac{1}{n}-\frac{1}{n+4}\right)=\frac{1}{4}\left(\frac{4}{n\left(n+4\right)}\right)=\frac{1}{n\left(n+4\right)}\)
Ta thấy \(VT=VP\left(ĐPCM\right)\)
a)
\(n+4⋮n+1\Leftrightarrow\left(n+1\right)+3⋮n+1\)
\(3⋮n+1\)(vì n+1 chia hết cho n+1)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{1;3\right\}\)
\(n+1=1\Rightarrow n=0\)
\(n+1=3\Rightarrow n=2\)
Vậy \(n\in\left\{0;2\right\}\)
b)
\(2n+3⋮n+1\Leftrightarrow2\left(n+1\right)+1⋮n+1\)
\(\Rightarrow1⋮n+1\)(vì 2(n+1) chia hết cho n+1)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{1\right\}\)
\(\Rightarrow n+1=1\Rightarrow n=0\)
Vậy \(n=0\)
a)
(n + 4 ) chia hết ( n + 1 )
(n + 1 ) +3 chia hết ( n + 1 )
vì n+1 luôn chia hết cho n+1 nên để (n + 1 ) +3 chia hết ( n + 1 ) thì 3 cũng phải chia hết cho n+1
=> n+1 thuộc Ư( 3 )
b)
tương tự phần a
cho mk nha
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
Ta quy đồng :
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
\(\Rightarrow\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\) (đpcm)