Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
->1/51+1/52+...+1/100>1/100+1/100+...+1/100(50 lần 1/100) (50 là số số hạng từ 51 đến 100) =>1/100+1/100+...+1/100=50/100=1/2 =>1/51+1/52+...+1/100>1/2 (ĐPCM) ->1/51+1/52+...+1/100<1/51+1/51+...+1/51(50 lần 1/51) =>1/51+1/51+...+1/51=50/51<1 =>1/51+1/52+...+1/100<50/51<1=>1/51+1/52+...+1/100<1 (ĐPCM)
Có thể làm như sau
Ta thấy \(\dfrac{1}{51}< \dfrac{1}{50}\)
\(\dfrac{1}{52}< \dfrac{1}{50}\)
.......
\(\dfrac{1}{100}< \dfrac{1}{50}\)
=> A = \(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}.50=1\)
Lại có
\(\dfrac{1}{51}>\dfrac{1}{100}\)
\(\dfrac{1}{52}>\dfrac{1}{100}\)
.......
\(\dfrac{1}{99}>\dfrac{1}{100}\)
=> A = \(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}>\dfrac{1}{100}.50=\dfrac{1}{2}\)
=> \(\dfrac{1}{2}< A< 1\)
Vậy A không phải số tự nhiên
Chứng minh rằng \(\frac{7}{12}<\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{40}<\frac{5}{6}\)
Bài 1:
Ta có: \(\frac{1}{51}>\frac{1}{100}\)
\(\frac{1}{52}>\frac{1}{100}\)
......
\(\frac{1}{99}>\frac{1}{100}\)
Công vế với vế lại ta được:
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\) (1)
Lại có: \(\frac{1}{51}< \frac{1}{50}\)
\(\frac{1}{52}< \frac{1}{50}\)
.....
\(\frac{1}{100}< \frac{1}{50}\)
Cộng vế với vế lại ta được:
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{50}{50}=1\) (2)
Từ (1)(2) => \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\) (đpcm)
Bài 2:
Đặt S = 1/41 + 1/42 +...+ 1/80
S có 40 số hạng,chia thành 4 nhóm,mỗi nhóm có 10 số hạng
Ta có:S = \(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\) + \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)+ \(\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)\)+ \(\left(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}\right)\)
=> S > \(\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\right)+\left(\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}\right)\)
=> S > \(\frac{10}{50}+\frac{10}{60}+\frac{10}{70}+\frac{10}{80}\)
=> S > \(\frac{533}{840}>\frac{490}{840}=\frac{7}{12}\)
Vậy \(S=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}>\frac{7}{12}\left(đpcm\right)\)
\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)(50 số 1/100)
\(\RightarrowĐPCM\)