Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tại \(x=4\)\(\Rightarrow\)\(-3x-3x+3=-3.4-3.4+3=-21\)
2) Tại \(x=0\)\(\Rightarrow\)\(-3x-3x+3=-3.0-3.0+3=3\)
3) Tại \(x=-4\)\(\Rightarrow\)\(-3x-3x+3=-3.-4-3.-4+3=27\)
\(\frac{x}{6}=\frac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{6}=\frac{y}{2}=\frac{x-y}{6-2}=-\frac{12}{4}=-3\Leftrightarrow\hept{\begin{cases}x=-3.6=-18\\y=-3.2=-6\end{cases}}\)
\(x+y=\left(-18\right)+\left(-6\right)=-24\)
Tam giác \(ABC\)có \(AB=AC\)nên tam giác \(ABC\)cân tại \(A\).
Do đó \(AM\)là đường phân giác trong của tam giác cũng đồng thời là đường cao của tam giác.
Nên \(\widehat{AMB}=\widehat{AMC}=90^o\).
`@` `\text {Ans}`
`\downarrow`
`P(x)=x^4 + 3x^2 + 13 = 0`
Vì \(\left\{{}\begin{matrix}x^4\ge0\text{ }\forall\text{ x}\\x^2\ge0\text{ }\forall\text{ x}\end{matrix}\right.\)
`=>`\(\left\{{}\begin{matrix}x^4\ge0\text{ }\forall\text{ x}\\3x^2\ge0\text{ }\forall\text{ x}\end{matrix}\right.\)
`=>`\(x^4+3x^2+13\ge13>0\text{ }\forall\text{ x}\)
Mà 13 \ne 0`
`=>` Đa thức `P(x)` vô nghiệm.
P(x) = x⁴ + 2 . x² . 3/2 + (3/2)² + 13 - (3/2)²
= (x² + 3/2)² + 43/4
Do (x² + 3/2)² ≥ 0 với mọi x
⇒ (x² + 3/2)² + 43/4 > 0 với mọi x
Vậy P(x) vô nghiệm