Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ƯCLN (n+1;2n+3)
ta có n+1 chia hết cho d suy ra 2(n+1) chia hết cho d nên 2n+2 chia hết cho d
mà 2n+3 cũng chia hết cho d nên [(2n+3)-(2n+2)] chia hết cho d
1 chia hết cho d nên n+1;2n+3 là 2 SNT cùng nhau
nên n+1/2n+3 là phân số tối giản
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\)
\(=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{19.20}<\)\(\frac{1}{2}\)
\(2A<\)\(\frac{1}{2}\)
\(\Rightarrow A<\)\(\frac{1}{4}\)
Vậy \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}<\)\(\frac{1}{4}\)
Đặt ưcln(n+3,n+4)=d(d€N*)
=>{n+3,n+4 chia hếtcho d
=>{4n+12,3n+12 chia hết cho d
=>4n+12-(3n+12)chia hết cho d
=>4n+12-3n-12 chia hết cho d
=>1chia hết cho d
=>d€ Ư(1)={ +-1}
Vậy n+3,n+4 nguyên tố cùng nhau
b) Gọi d là ƯC ( 2n + 3 ; 6n + 8 )
=> ( 2n + 3 ) \(⋮\)d và ( 6n +8 ) \(⋮\)d
=> 3 ( 2n + 9 ) \(⋮\)d và ( 6n +8 ) \(⋮\)d
=> [ ( 6n + 9 ) - ( 6n + 8 ) ] \(⋮\)d
=> 1 \(⋮\) d ; d \(\in\) N*
=> d = 1
Vậy ƯCLN ( 2n + 3 ; 6 n+ 8 ) = 1 => \(\frac{2n+3}{6n+8}\) là phân số tối giản.
Gọi ƯCLN(14n+3;31n+4)=d
Ta có:
14n+3 chia hết cho d
=> 3(14n+3) chia hết cho d
=> 42n+9 chia hết cho d
21n+4 chia hết cho d
=> 2(21n+4) chia hết cho d
=> 42n+8 chia hết cho d
=> (42n+9)-(42n+8) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> Phân số \(\frac{14n+3}{21n+4}\) là phân số tối giản
Vậy phân số \(\frac{14n+3}{21n+4}\) là phân số tối giản
a) Để A có giá trị nguyên thì n + 1 chia hết cho n - 3
=> n - 3 + 4 chia hết cho n - 3
Mà n - 3 chia hết cho n - 3
=> 4 chia hết cho n - 3
=> n - 3 thuộc Ư(4)
=> n - 3 thuộc {-4; -2; -1; 1; 2; 4}
=> n thuộc {-1; 1; 2; 4; 5; 7}
b) Để A có giá trị phân số thì n - 3 khác 0
=> n khác 3
Ta có: \(\frac{1}{n}-\frac{1}{n+a}=\frac{1.\left(n+a\right)-1.n}{n\left(n+a\right)}=\frac{n+a-n}{n\left(n+a\right)}=\frac{n-n+a}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
Mà \(\frac{a}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}=>\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}ĐPCM\)
(1/2*X+2/1/4)*-2/3=2/5/6
(1/2*X+9/4)*-2/3=17/6
(1/2*X+9/4)=-17/4
1/2*X=-13/2
X=-13
\(\frac{n+3}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)
Để n+3/n-2 là số nguyên thì: n-2 thuộc Ư(5)={1;-1;5;-5}
=>n=3;1;7;-3
Với n=3 => n+3/n-2 nguyên dương
n=1 => n+3/n-2 nguyên âm
n=7 =>n+3/n-2 nguyên dương
n=-3 =>n+3/n-2 nguyên âm
Vậy n=3;7
Câu a đề sai nha bạn
Câu b:
Gọi d=UCLN(21n+4;14n+3)
\(\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\Leftrightarrow-1⋮d\)
=>d=1
=>UCLN(42n+8;42n+9)=1
Vậy: 21n+4/14n+3 là phân số tối giản