K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 4 2020

Chắc bạn ghi nhầm đề, pt này giải luôn được mà:

\(x^{2018}-2018=0\Leftrightarrow x^{2018}=2018\)

\(\Leftrightarrow x=\pm\sqrt[2018]{2018}\)

Phương trình có đúng 2 nghiệm

NV
5 tháng 4 2022

Đề bài sai, ví dụ: với \(a=b=1\) thì \(x^2+x-1=0\) có 1 nghiệm thuộc \(\left(0;1\right)\) thỏa mãn yêu cầu

Nhưng \(x^2-2x+1=0\) có nghiệm kép, không phải hai nghiệm phân biệt

NV
9 tháng 3 2023

Đặt \(f\left(x\right)=\left(m^2-m+1\right)x^4-3x^3-1\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng trên R

\(f\left(0\right)=-1< 0\)

\(f\left(3\right)=81\left(m^2-m+1\right)-55=81\left(m-\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\)

\(\Rightarrow f\left(0\right).f\left(3\right)< 0\Rightarrow\) pt có ít nhất 1 nghiệm thuộc \(\left(0;3\right)\)

\(f\left(-1\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)

\(\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow\) pt có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

\(\Rightarrow\) Pt có ít nhất 2 nghiệm thuộc \(\left(-1;3\right)\Rightarrow\) có ít nhất 2 nghiệm trên \(\left(-5;5\right)\)

17 tháng 5 2016

a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.

Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).

Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.

b) Hàm số g(x) = cosx - x xác định trên R nên liên tục trên R.

Mặt khác, ta có g(0).g() = 1. (-) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; ).

17 tháng 5 2016

Hoàng anh gia lai và Võ Đong Anh Tuấn chắc chắn là 1 người

4 tháng 4 2017

a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.

Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).

Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.

b) Hàm số g(x) = cosx – x xác định trên R nên liên tục trên R.

Mặt khác, ta có g(0).g(π/2) = 1. (-π/2) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; π/2).

4 tháng 4 2017

a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.

Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).

Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.

b) Hàm số g(x) = cosx - x xác định trên R nên liên tục trên R.

Mặt khác, ta có g(0).g() = 1. (-) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; ).

22 tháng 3 2018

Chứng minh rằng phương trình sau có ít nhất hai nghiệm : 

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

- Xét hàm số: f ( x ) = 2 x 3 - 5 x 2 + x + 1  là hàm đa thức.

⇒ Hàm số f liên tục trên R.

- Ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) có ít nhất một nghiệm c1 ∈ (0;1).

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) có ít nhất một nghiệm c2 ∈ (2;3).

- Mà c   ≠   c 2  nên PT f(x) = 0 có ít nhất 2 nghiệm.

NV
26 tháng 3 2021

Xét hàm \(f\left(x\right)=m\left(x-1\right)^3\left(x^2-4\right)+x^4-3\)

Hàm \(f\left(x\right)\) là hàm liên tục trên R

\(f\left(1\right)=-2< 0\)

\(f\left(-2\right)=13>0\)

\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\)

\(f\left(2\right)=13>0\Rightarrow f\left(1\right).f\left(2\right)< 0\)

\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\)

\(\Rightarrow\) Phương trình đã cho luôn có ít nhất 2 nghiệm với mọi m