Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]
b) Gọi d là ước chung lớn nhất của 3n và 3n+1
=> 3n \(⋮\)d
Và: 3n+1 \(⋮\)d
=> (3n+1)-3n \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư(1)
=> d \(\in\){ 1}
Vậy \(\frac{3n}{3n+1}\)là phân số tối giản
Duyệt đi, chúc bạn học giỏi!
Giả sử (m + n)/n không là phân số tối giản. Đặt Ư CLN(m + n;n) = d (d ≠ 1). Khi đó (m + n) ⋮ d, n ⋮ d => (a + b) - b ⋮ d => a ⋮ d mà n ⋮ d => m/n không tối giản (vô lý) => với mọi d khác 1 m/n không tối giản => d = 1 => (m + n)/n cũng là phân số tối giản. Vậy ta có đpcm.
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
a) gọi D là UCLN(3n-2;4n-3)
\(\Rightarrow\)\(\hept{\begin{cases}3n-2\\4n-3\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}4\left(3n-2\right)\\3\left(4n-3\right)\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}12n-8\\12n-9\end{cases}}\)chia hết cho D
\(\Rightarrow\)[(12n-9)-(12n-8)] chia hết cho D
\(\Rightarrow\)(12n-9-12n+8) chia hết cho D
\(\Rightarrow\)-1 chia hết cho D => D \(\in\) U(1) =>D \(\in\){1;-1}
hay UCLN(3n-2;4n-3) \(\in\){1;-1}
chứng minh \(\frac{3n-2}{4n-3}\)là phân số tối giản
b) +) để A là phân số thì n-3\(\ne\)0
=>n\(\ne\)3
+) ta có \(\frac{n+1}{n-3}\)= \(\frac{n-3+4}{n-3}\)= 1 + \(\frac{4}{n-3}\)
để A là số nguyên thì \(\frac{4}{n-3}\) cũng phải là số nguyên
=> 4 chia hết n-3
=> n-3 \(\in\)U(4)
mà U(4) = {-1;-2;-4;1;2;4}
ta có bảng
n-3 | -1 | -2 | -4 | 1 | 2 | 4 |
n | 2 | 1 | -1 | 4 | 5 | 7 |
vậy n \(\in\){2;1;-1;4;5;7} thì A là số nguyên
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
Giải:
Gọi d = ƯCLN(n+1;n). Nên suy ra:
n+1 chia hết cho d
n chia hết cho d
\(\Rightarrow n+1-n\) chia hết cho d
\(\Rightarrow1\) chia hết cho d
\(\Rightarrow d=1\)
\(\Rightarrow\) ƯCLN(n+1;n)=1
\(\Rightarrow\) Phân số \(A=\frac{n+1}{n}\) là phân số tối giản ( đpcm)
Ta có n + 1 và n là hai số tự nhiên liên tiếp.
Vì n và n + 1 là hai số nguyên tố cùng nhau nên:
n + 1 và n có ƯCLN = 1
Vì ƯCLN là 1 nên không thể rút gọn
=> \(\frac{n+1}{n}\) tối giản